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Chapter 9

Microbial Growth

Figure 9.1 Medical devices that are inserted into a patient’s body often become contaminated with a thin biofilm of
microorganisms enmeshed in the sticky material they secrete. The electron micrograph (left) shows the inside walls
of an in-dwelling catheter. Arrows point to the round cells of Staphylococcus aureus bacteria attached to the layers of
extracellular substrate. The garbage can (right) served as a rain collector. The arrow points to a green biofilm on the
sides of the container. (credit left: modification of work by Centers for Disease Control and Prevention; credit right:
modification of work by NASA)
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Introduction

We are all familiar with the slimy layer on a pond surface or that makes rocks slippery. These are examples of
biofilms—microorganisms embedded in thin layers of matrix material (Figure 9.1). Biofilms were long considered
random assemblages of cells and had little attention from researchers. Recently, progress in visualization and
biochemical methods has revealed that biofilms are an organized ecosystem within which many cells, usually of
different species of bacteria, fungi, and algae, interact through cell signaling and coordinated responses. The biofilm
provides a protected environment in harsh conditions and aids colonization by microorganisms. Biofilms also have
clinical importance. They form on medical devices, resist routine cleaning and sterilization, and cause health-acquired
infections. Within the body, biofilms form on the teeth as plaque, in the lungs of patients with cystic fibrosis, and on
the cardiac tissue of patients with endocarditis. The slime layer helps protect the cells from host immune defenses and
antibiotic treatments.

Studying biofilms requires new approaches. Because of the cells’ adhesion properties, many of the methods for
culturing and counting cells that are explored in this chapter are not easily applied to biofilms. This is the beginning
of a new era of challenges and rewarding insight into the ways that microorganisms grow and thrive in nature.
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9.1 How Microbes Grow

Learning Objectives
» Define the generation time for growth based on binary fission

 Identify and describe the activities of microorganisms undergoing typical phases of binary fission (simple cell
division) in a growth curve

« Explain several laboratory methods used to determine viable and total cell counts in populations undergoing
exponential growth

» Describe examples of cell division not involving binary fission, such as budding or fragmentation

» Describe the formation and characteristics of biofilms

« Identify health risks associated with biofilms and how they are addressed

» Describe quorum sensing and its role in cell-to-cell communication and coordination of cellular activities

The bacterial cell cycle involves the formation of new cells through the replication of DNA and partitioning of cellular
components into two daughter cells. In prokaryotes, reproduction is always asexual, although extensive genetic
recombination in the form of horizontal gene transfer takes place, as will be explored in a different chapter. Most
bacteria have a single circular chromosome; however, some exceptions exist. For example, Borrelia burgdorferi, the
causative agent of Lyme disease, has a linear chromosome.

Binary Fission

The most common mechanism of cell replication in bacteria is a process called binary fission, which is depicted in
Figure 9.2. Before dividing, the cell grows and increases its number of cellular components. Next, the replication
of DNA starts at a location on the circular chromosome called the origin of replication, where the chromosome is
attached to the inner cell membrane. Replication continues in opposite directions along the chromosome until the
terminus is reached.

The center of the enlarged cell constricts until two daughter cells are formed, each offspring receiving a complete copy
of the parental genome and a division of the cytoplasm (cytokinesis). This process of cytokinesis and cell division is
directed by a protein called FtsZ. FtsZ assembles into a Z ring on the cytoplasmic membrane (Figure 9.3). The Z
ring is anchored by FtsZ-binding proteins and defines the division plane between the two daughter cells. Additional
proteins required for cell division are added to the Z ring to form a structure called the divisome. The divisome
activates to produce a peptidoglycan cell wall and build a septum that divides the two daughter cells. The daughter
cells are separated by the division septum, where all of the cells’ outer layers (the cell wall and outer membranes, if

Clinical Focus
~

Part 1

Jeni, a 24-year-old pregnant woman in her second trimester, visits a clinic with complaints of high fever, 38.9 °C
(102 °F), fatigue, and muscle aches—typical flu-like signs and symptoms. Jeni exercises regularly and follows
a nutritious diet with emphasis on organic foods, including raw milk that she purchases from a local farmer’s
market. All of her immunizations are up to date. However, the health-care provider who sees Jeni is concerned
and orders a blood sample to be sent for testing by the microbiology laboratory.

¢ Why is the health-care provider concerned about Jeni's signs and symptoms?

Jump to the next Clinical Focus box

This OpenStax book is available for free at http://cnx.org/content/col12087/1.5
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present) must be remodeled to complete division. For example, we know that specific enzymes break bonds between
the monomers in peptidoglycans and allow addition of new subunits along the division septum.

-

DNA formanon cell
replication of division separation
septum

cell elongation

(b)

Figure 9.2 (@) The electron micrograph depicts two cells of Salmonella typhimurium after a binary fission event. (b)
Binary fission in bacteria starts with the replication of DNA as the cell elongates. A division septum forms in the center
of the cell. Two daughter cells of similar size form and separate, each receiving a copy of the original chromosome.
(credit a: modification of work by Centers for Disease Control and Prevention)

cleavage
furrow FtsZ ring
septum
septum

Figure 9.3 FtsZ proteins assemble to form a Z ring that is anchored to the plasma membrane. The Z ring pinches
the cell envelope to separate the cytoplasm of the new cells.
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|__{ Check Your Understanding

* What is the name of the protein that assembles into a Z ring to initiate cytokinesis and cell division?

Generation Time

In eukaryotic organisms, the generation time is the time between the same points of the life cycle in two successive
generations. For example, the typical generation time for the human population is 25 years. This definition is
not practical for bacteria, which may reproduce rapidly or remain dormant for thousands of years. In prokaryotes
(Bacteria and Archaea), the generation time is also called the doubling time and is defined as the time it takes for
the population to double through one round of binary fission. Bacterial doubling times vary enormously. Whereas
Escherichia coli can double in as little as 20 minutes under optimal growth conditions in the laboratory, bacteria of the
same species may need several days to double in especially harsh environments. Most pathogens grow rapidly, like
E. coli, but there are exceptions. For example, Mycobacterium tuberculosis, the causative agent of tuberculosis, has a
generation time of between 15 and 20 hours. On the other hand, M. leprae, which causes Hansen’s disease (leprosy),
grows much more slowly, with a doubling time of 14 days.

\

Calculating Number of Cells

It is possible to predict the number of cells in a population when they divide by binary fission at a constant rate.
As an example, consider what happens if a single cell divides every 30 minutes for 24 hours. The diagram in
Figure 9.4 shows the increase in cell numbers for the first three generations.

The number of cells increases exponentially and can be expressed as 2", where n is the number of
generations. If cells divide every 30 minutes, after 24 hours, 48 divisions would have taken place. If we apply
the formula 2", where n is equal to 48, the single cell would give rise to 2*8 or 281,474,976,710,656 cells at 48
generations (24 hours). When dealing with such huge numbers, it is more practical to use scientific notation.
Therefore, we express the number of cells as 2.8 x 104 cells.

In our example, we used one cell as the initial number of cells. For any number of starting cells, the formula is
adapted as follows:

N, is the number of cells at any generation n, Ny is the initial number of cells, and n is the number of
generations.

This OpenStax book is available for free at http://cnx.org/content/col12087/1.5
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Figure 9.4 The parental cell divides and gives rise to two daughter cells. Each of the daughter cells, in turn,
divides, giving a total of four cells in the second generation and eight cells in the third generation. Each
division doubles the number of cells.

. J

|”_{ Check Your Understanding

» With a doubling time of 30 minutes and a starting population size of 1 x 10° cells, how many cells will be
present after 2 hours, assuming no cell death?

The Growth Curve

Microorganisms grown in closed culture (also known as a batch culture), in which no nutrients are added and most
waste is not removed, follow a reproducible growth pattern referred to as the growth curve. An example of a batch
culture in nature is a pond in which a small number of cells grow in a closed environment. The culture density is
defined as the number of cells per unit volume. In a closed environment, the culture density is also a measure of the
number of cells in the population. Infections of the body do not always follow the growth curve, but correlations can
exist depending upon the site and type of infection. When the number of live cells is plotted against time, distinct
phases can be observed in the curve (Figure 9.5).
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Figure 9.5 The growth curve of a bacterial culture is represented by the logarithm of the number of live cells plotted
as a function of time. The graph can be divided into four phases according to the slope, each of which matches
events in the cell. The four phases are lag, log, stationary, and death.

The Lag Phase

The beginning of the growth curve represents a small number of cells, referred to as an ineculum, that are added to a
fresh culture medium, a nutritional broth that supports growth. The initial phase of the growth curve is called the lag
phase, during which cells are gearing up for the next phase of growth. The number of cells does not change during
the lag phase; however, cells grow larger and are metabolically active, synthesizing proteins needed to grow within
the medium. If any cells were damaged or shocked during the transfer to the new medium, repair takes place during
the lag phase. The duration of the lag phase is determined by many factors, including the species and genetic make-up
of the cells, the composition of the medium, and the size of the original inoculum.

The Log Phase

In the logarithmic (log) growth phase, sometimes called exponential growth phase, the cells are actively dividing
by binary fission and their number increases exponentially. For any given bacterial species, the generation time under
specific growth conditions (nutrients, temperature, pH, and so forth) is genetically determined, and this generation
time is called the intrinsic growth rate. During the log phase, the relationship between time and number of cells
is not linear but exponential;, however, the growth curve is often plotted on a semilogarithmic graph, as shown in
Figure 9.6, which gives the appearance of a linear relationship.
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Figure 9.6 Both graphs illustrate population growth during the log phase for a bacterial sample with an initial
population of one cell and a doubling time of 1 hour. (2) When plotted on an arithmetic scale, the growth rate
resembles a curve. (b) When plotted on a semilogarithmic scale (meaning the values on the y-axis are logarithmic),
the growth rate appears linear.

Cells in the log phase show constant growth rate and uniform metabolic activity. For this reason, cells in the log phase
are preferentially used for industrial applications and research work. The log phase is also the stage where bacteria
are the most susceptible to the action of disinfectants and common antibiotics that affect protein, DNA, and cell-wall
synthesis.

Stationary Phase

As the number of cells increases through the log phase, several factors contribute to a slowing of the growth rate.
Waste products accumulate and nutrients are gradually used up. In addition, gradual depletion of oxygen begins to
limit aerobic cell growth. This combination of unfavorable conditions slows and finally stalls population growth. The
total number of live cells reaches a plateau referred to as the stationary phase (Figure 9.5). In this phase, the number
of new cells created by cell division is now equivalent to the number of cells dying; thus, the total population of living
cells is relatively stagnant. The culture density in a stationary culture is constant. The culture’s carrying capacity, or
maximum culture density, depends on the types of microorganisms in the culture and the specific conditions of the
culture; however, carrying capacity is constant for a given organism grown under the same conditions.

During the stationary phase, cells switch to a survival mode of metabolism. As growth slows, so too does the synthesis
of peptidoglycans, proteins, and nucleic-acids; thus, stationary cultures are less susceptible to antibiotics that disrupt
these processes. In bacteria capable of producing endospores, many cells undergo sporulation during the stationary
phase. Secondary metabolites, including antibiotics, are synthesized in the stationary phase. In certain pathogenic
bacteria, the stationary phase is also associated with the expression of virulence factors, products that contribute to
a microbe’s ability to survive, reproduce, and cause disease in a host organism. For example, quorum sensing in
Staphylococcus aureus initiates the production of enzymes that can break down human tissue and cellular debris,
clearing the way for bacteria to spread to new tissue where nutrients are more plentiful.

The Death Phase

As a culture medium accumulates toxic waste and nutrients are exhausted, cells die in greater and greater numbers.
Soon, the number of dying cells exceeds the number of dividing cells, leading to an exponential decrease in the
number of cells (Figure 9.5). This is the aptly named death phase, sometimes called the decline phase. Many cells
lyse and release nutrients into the medium, allowing surviving cells to maintain viability and form endospores. A
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few cells, the so-called persisters, are characterized by a slow metabolic rate. Persister cells are medically important
because they are associated with certain chronic infections, such as tuberculosis, that do not respond to antibiotic
treatment.

Sustaining Microbial Growth

The growth pattern shown in Figure 9.5 takes place in a closed environment; nutrients are not added and waste and
dead cells are not removed. In many cases, though, it is advantageous to maintain cells in the logarithmic phase of
growth. One example is in industries that harvest microbial products. A chemostat (Figure 9.7) is used to maintain
a continuous culture in which nutrients are supplied at a steady rate. A controlled amount of air is mixed in for
aerobic processes. Bacterial suspension is removed at the same rate as nutrients flow in to maintain an optimal growth
environment.

feed effluent

<ah
i

Figure 9.7 A chemostat is a culture vessel fitted with an opening to add nutrients (feed) and an outlet to remove
contents (effluent), effectively diluting toxic wastes and dead cells. The addition and removal of fluids is adjusted to
maintain the culture in the logarithmic phase of growth. If aerobic bacteria are grown, suitable oxygen levels are
maintained.

L__{ Check Your Understanding

¢ During which phase does growth occur at the fastest rate?

* Name two factors that limit microbial growth.

Measurement of Bacterial Growth

Estimating the number of bacterial cells in a sample, known as a bacterial count, is a common task performed by
microbiologists. The number of bacteria in a clinical sample serves as an indication of the extent of an infection.
Quality control of drinking water, food, medication, and even cosmetics relies on estimates of bacterial counts to
detect contamination and prevent the spread of disease. Two major approaches are used to measure cell number.
The direct methods involve counting cells, whereas the indirect methods depend on the measurement of cell
presence or activity without actually counting individual cells. Both direct and indirect methods have advantages and
disadvantages for specific applications.

Direct Cell Count

Direct cell count refers to counting the cells in a liquid culture or colonies on a plate. It is a direct way of estimating
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how many organisms are present in a sample. Let’s look first at a simple and fast method that requires only a
specialized slide and a compound microscope.

The simplest way to count bacteria is called the direct microscopic cell count, which involves transferring a known
volume of a culture to a calibrated slide and counting the cells under a light microscope. The calibrated slide is called
a Petroff-Hausser chamber (Figure 9.8) and is similar to a hemocytometer used to count red blood cells. The
central area of the counting chamber is etched into squares of various sizes. A sample of the culture suspension is
added to the chamber under a coverslip that is placed at a specific height from the surface of the grid. It is possible
to estimate the concentration of cells in the original sample by counting individual cells in a number of squares and
determining the volume of the sample observed. The area of the squares and the height at which the coverslip is
positioned are specified for the chamber. The concentration must be corrected for dilution if the sample was diluted
before enumeration.

Count cells
in this square
— 1.00 mm
Jn—
/ ANFEL \
0.05 MM —== - L0 MM e )
0.25 mm - — 1.00 mm

(@ (b)

Figure 9.8 (a) A Petroff-Hausser chamber is a special slide designed for counting the bacterial cells in a measured
volume of a sample. A grid is etched on the slide to facilitate precision in counting. (b) This diagram illustrates the grid
of a Petroff-Hausser chamber, which is made up of squares of known areas. The enlarged view shows the square
within which bacteria (red cells) are counted. If the coverslip is 0.2 mm above the grid and the square has an area of
0.04 mm?, then the volume is 0.008 mm?, or 0.000008 mL. Since there are 10 cells inside the square, the density of
bacteria is 10 cells/0.000008 mL, which equates to 1,250,000 cells/mL. (credit a: modification of work by Jeffrey M.
Vinocur)

Cells in several small squares must be counted and the average taken to obtain a reliable measurement. The
advantages of the chamber are that the method is easy to use, relatively fast, and inexpensive. On the downside, the
counting chamber does not work well with dilute cultures because there may not be enough cells to count.

Using a counting chamber does not necessarily yield an accurate count of the number of live cells because it is
not always possible to distinguish between live cells, dead cells, and debris of the same size under the microscope.
However, newly developed fluorescence staining techniques make it possible to distinguish viable and dead bacteria.
These viability stains (or live stains) bind to nucleic acids, but the primary and secondary stains differ in their ability
to cross the cytoplasmic membrane. The primary stain, which fluoresces green, can penetrate intact cytoplasmic
membranes, staining both live and dead cells. The secondary stain, which fluoresces red, can stain a cell only if the
cytoplasmic membrane is considerably damaged. Thus, live cells fluoresce green because they only absorb the green
stain, whereas dead cells appear red because the red stain displaces the green stain on their nucleic acids (Figure
9.9).
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Figure 9.9 Fluorescence staining can be used to differentiate between viable and dead bacterial cells in a sample
for purposes of counting. Viable cells are stained green, whereas dead cells are stained red. (credit: modification of
work by Panseri S, Cunha C, D’Alessandro T, Sandri M, Giavaresi G, Maracci M, Hung CT, Tampieri A)

Another technique uses an electronic cell counting device (Coulter counter) to detect and count the changes in
electrical resistance in a saline solution. A glass tube with a small opening is immersed in an electrolyte solution. A
first electrode is suspended in the glass tube. A second electrode is located outside of the tube. As cells are drawn
through the small aperture in the glass tube, they briefly change the resistance measured between the two electrodes
and the change is recorded by an electronic sensor (Figure 9.10); each resistance change represents a cell. The
method is rapid and accurate within a range of concentrations; however, if the culture is too concentrated, more than
one cell may pass through the aperture at any given time and skew the results. This method also does not differentiate
between live and dead cells.

Direct counts provide an estimate of the total number of cells in a sample. However, in many situations, it is important
to know the number of live, or viable, cells. Counts of live cells are needed when assessing the extent of an infection,
the effectiveness of antimicrobial compounds and medication, or contamination of food and water.

I [ s s | s e
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Figure 9.10 A Coulter counter is an electronic device that counts cells. It measures the change in resistance in an
electrolyte solution that takes place when a cell passes through a small opening in the inside container wall. A
detector automatically counts the number of cells passing through the opening. (credit b: modification of work by
National Institutes of Health)
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|__{ Check Your Understanding

e Why would you count the number of cells in more than one square in the Petroff-Hausser chamber to
estimate cell numbers?

* In the viability staining method, why do dead cells appear red?

Plate Count

The viable plate count, or simply plate count, is a count of viable or live cells. It is based on the principle that viable
cells replicate and give rise to visible colonies when incubated under suitable conditions for the specimen. The results
are usually expressed as colony-forming units per milliliter (CFU/mL) rather than cells per milliliter because more
than one cell may have landed on the same spot to give rise to a single colony. Furthermore, samples of bacteria
that grow in clusters or chains are difficult to disperse and a single colony may represent several cells. Some cells
are described as viable but nonculturable and will not form colonies on solid media. For all these reasons, the viable
plate count is considered a low estimate of the actual number of live cells. These limitations do not detract from the
usefulness of the method, which provides estimates of live bacterial numbers.

Microbiologists typically count plates with 30—300 colonies. Samples with too few colonies (<30) do not give
statistically reliable numbers, and overcrowded plates (>300 colonies) make it difficult to accurately count individual
colonies. Also, counts in this range minimize occurrences of more than one bacterial cell forming a single colony.
Thus, the calculated CFU is closer to the true number of live bacteria in the population.

There are two common approaches to inoculating plates for viable counts: the pour plate and the spread plate methods.
Although the final inoculation procedure differs between these two methods, they both start with a serial dilution of
the culture.

Serial Dilution

The serial dilution of a culture is an important first step before proceeding to either the pour plate or spread plate
method. The goal of the serial dilution process is to obtain plates with CFUs in the range of 30—300, and the process
usually involves several dilutions in multiples of 10 to simplify calculation. The number of serial dilutions is chosen
according to a preliminary estimate of the culture density. Figure 9.11 illustrates the serial dilution method.

A fixed volume of the original culture, 1.0 mL, is added to and thoroughly mixed with the first dilution tube solution,
which contains 9.0 mL of sterile broth. This step represents a dilution factor of 10, or 1:10, compared with the original
culture. From this first dilution, the same volume, 1.0 mL, is withdrawn and mixed with a fresh tube of 9.0 mL of
dilution solution. The dilution factor is now 1:100 compared with the original culture. This process continues until a
series of dilutions is produced that will bracket the desired cell concentration for accurate counting. From each tube,
a sample is plated on solid medium using either the pour plate method (Figure 9.12) or the spread plate method
(Figure 9.13). The plates are incubated until colonies appear. Two to three plates are usually prepared from each
dilution and the numbers of colonies counted on each plate are averaged. In all cases, thorough mixing of samples
with the dilution medium (to ensure the cell distribution in the tube is random) is paramount to obtaining reliable
results.
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Figure 9.11 Serial dilution involves diluting a fixed volume of cells mixed with dilution solution using the previous
dilution as an inoculum. The result is dilution of the original culture by an exponentially growing factor. (credit:
modification of work by “Leberechtc”/Wikimedia Commons)

The dilution factor is used to calculate the number of cells in the original cell culture. In our example, an average of
50 colonies was counted on the plates obtained from the 1:10,000 dilution. Because only 0.1 mL of suspension was
pipetted on the plate, the multiplier required to reconstitute the original concentration is 10 x 10,000. The number of
CFU per mL is equal to 50 x 10 x 10,000 = 5,000,000. The number of bacteria in the culture is estimated as 5 million
cells/mL. The colony count obtained from the 1:1000 dilution was 389, well below the expected 500 for a 10-fold
difference in dilutions. This highlights the issue of inaccuracy when colony counts are greater than 300 and more than
one bacterial cell grows into a single colony.

Pour Plate Method

Bacterial sample Sample poured Sample swirled Plate incubated
mixed with warm onto sterile plate to mix, allowed until bacterial
agar (45-50 °C) to solidify colonies grow

©

Figure 9.12 In the pour plate method of cell counting, the sample is mixed in liquid warm agar (45-50 °C) poured
into a sterile Petri dish and further mixed by swirling. This process is repeated for each serial dilution prepared. The
resulting colonies are counted and provide an estimate of the number of cells in the original volume sampled.
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Spread Plate Method
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Figure 9.13 In the spread plate method of cell counting, the sample is poured onto solid agar and then spread using
a sterile spreader. This process is repeated for each serial dilution prepared. The resulting colonies are counted and
provide an estimate of the number of cells in the original volume samples.

A very dilute sample—drinking water, for example—may not contain enough organisms to use either of the plate
count methods described. In such cases, the original sample must be concentrated rather than diluted before plating.
This can be accomplished using a modification of the plate count technique called the membrane filtration
technique. Known volumes are vacuum-filtered aseptically through a membrane with a pore size small enough to trap
microorganisms. The membrane is transferred to a Petri plate containing an appropriate growth medium. Colonies are
counted after incubation. Calculation of the cell density is made by dividing the cell count by the volume of filtered
liquid.

4 ) .

Watch this video (https:/lopenstax.orgl/li22serdilpltcvid) for demonstrations of
serial dilutions and spread plate techniques.
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The Most Probable Number

The number of microorganisms in dilute samples is usually too low to be detected by the plate count methods
described thus far. For these specimens, microbiologists routinely use the most probable number (MPN) method, a
statistical procedure for estimating of the number of viable microorganisms in a sample. Often used for water and food
samples, the MPN method evaluates detectable growth by observing changes in turbidity or color due to metabolic
activity.

A typical application of MPN method is the estimation of the number of coliforms in a sample of pond water.
Coliforms are gram-negative rod bacteria that ferment lactose. The presence of coliforms in water is considered a
sign of contamination by fecal matter. For the method illustrated in Figure 9.14, a series of three dilutions of the
water sample is tested by inoculating five lactose broth tubes with 10 mL of sample, five lactose broth tubes with 1
mL of sample, and five lactose broth tubes with 0.1 mL of sample. The lactose broth tubes contain a pH indicator
that changes color from red to yellow when the lactose is fermented. After inoculation and incubation, the tubes are
examined for an indication of coliform growth by a color change in media from red to yellow. The first set of tubes
(10-mL sample) showed growth in all the tubes; the second set of tubes (1 mL) showed growth in two tubes out of
five; in the third set of tubes, no growth is observed in any of the tubes (0.1-mL dilution). The numbers 5, 2, and 0 are
compared with Figure B1 in Appendix B, which has been constructed using a probability model of the sampling
procedure. From our reading of the table, we conclude that 49 is the most probable number of bacteria per 100 mL of
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Figure 9.14 In the most probable number method, sets of five lactose broth tubes are inoculated with three different
volumes of pond water: 10 mL, 1 mL, and 0.1mL. Bacterial growth is assessed through a change in the color of the

broth from red to yellow as lactose is fermented.

L__{ Check Your Understanding

¢ What is a colony-forming unit?
* What two methods are frequently used to estimate bacterial numbers in water samples?

Indirect Cell Counts

Besides direct methods of counting cells, other methods, based on an indirect detection of cell density, are commonly
used to estimate and compare cell densities in a culture. The foremost approach is to measure the turbidity
(cloudiness) of a sample of bacteria in a liquid suspension. The laboratory instrument used to measure turbidity is
called a spectrophotometer (Figure 9.15). In a spectrophotometer, a light beam is transmitted through a bacterial
suspension, the light passing through the suspension is measured by a detector, and the amount of light passing
through the sample and reaching the detector is converted to either percent transmission or a logarithmic value called
absorbance (optical density). As the numbers of bacteria in a suspension increase, the turbidity also increases and
causes less light to reach the detector. The decrease in light passing through the sample and reaching the detector is
associated with a decrease in percent transmission and increase in absorbance measured by the spectrophotometer.

Measuring turbidity is a fast method to estimate cell density as long as there are enough cells in a sample to produce
turbidity. It is possible to correlate turbidity readings to the actual number of cells by performing a viable plate
count of samples taken from cultures having a range of absorbance values. Using these values, a calibration curve is
generated by plotting turbidity as a function of cell density. Once the calibration curve has been produced, it can be
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used to estimate cell counts for all samples obtained or cultured under similar conditions and with densities within the
range of values used to construct the curve.
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Figure 9.15 (a) A spectrophotometer is commonly used to measure the turbidity of a bacterial cell suspension as an
indirect measure of cell density. (b) A spectrophotometer works by splitting white light from a source into a spectrum.
The spectrophotometer allows choice of the wavelength of light to use for the measurement. The optical density
(turbidity) of the sample will depend on the wavelength, so once one wavelength is chosen, it must be used
consistently. The filtered light passes through the sample (or a control with only medium) and the light intensity is
measured by a detector. The light passing into a suspension of bacteria is scattered by the cells in such a way that
some fraction of it never reaches the detector. This scattering happens to a far lesser degree in the control tube with
only the medium. (credit a: modification of work by Hwang HS, Kim MS; credit b “test tube photos”: modification of
work by Suzanne Wakim)

Measuring dry weight of a culture sample is another indirect method of evaluating culture density without directly
measuring cell counts. The cell suspension used for weighing must be concentrated by filtration or centrifugation,
washed, and then dried before the measurements are taken. The degree of drying must be standardized to account
for residual water content. This method is especially useful for filamentous microorganisms, which are difficult to
enumerate by direct or viable plate count.

As we have seen, methods to estimate viable cell numbers can be labor intensive and take time because cells must be
grown. Recently, indirect ways of measuring live cells have been developed that are both fast and easy to implement.
These methods measure cell activity by following the production of metabolic products or disappearance of reactants.
Adenosine triphosphate (ATP) formation, biosynthesis of proteins and nucleic acids, and consumption of oxygen can
all be monitored to estimate the number of cells.

Check Your Understanding

¢ What is the purpose of a calibration curve when estimating cell count from turbidity measurements?

¢ What are the newer indirect methods of counting live cells?

Alternative Patterns of Cell Division

Binary fission is the most common pattern of cell division in prokaryotes, but it is not the only one. Other mechanisms
usually involve asymmetrical division (as in budding) or production of spores in aerial filaments.

In some cyanobacteria, many nucleoids may accumulate in an enlarged round cell or along a filament, leading to
the generation of many new cells at once. The new cells often split from the parent filament and float away in a
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process called fragmentation (Figure 9.16). Fragmentation is commonly observed in the Actinomycetes, a group of
gram-positive, anaerobic bacteria commonly found in soil. Another curious example of cell division in prokaryotes,
reminiscent of live birth in animals, is exhibited by the giant bacterium Epulopiscium. Several daughter cells grow
fully in the parent cell, which eventually disintegrates, releasing the new cells to the environment. Other species may
form a long narrow extension at one pole in a process called budding. The tip of the extension swells and forms a
smaller cell, the bud that eventually detaches from the parent cell. Budding is most common in yeast (Figure 9.16),
but it is also observed in prosthecate bacteria and some cyanobacteria.

Figure 9.16 (a) Filamentous cyanobacteria, like those pictured here, replicate by fragmentation. (b) In this electron
micrograph, cells of the bacterium Gemmata obscuriglobus are budding. The larger cell is the mother cell. Labels
indicate the nucleoids (N) and the still-forming nuclear envelope (NE) of the daughter cell. (credit a: modification of
work by CSIRO; credit b: modification of work by Kuo-Chang Lee, Rick | Webb and John A Fuerst)

The soil bacteria Actinomyces grow in long filaments divided by septa, similar to the mycelia seen in fungi, resulting
in long cells with multiple nucleoids. Environmental signals, probably related to low nutrient availability, lead to the
formation of aerial filaments. Within these aerial filaments, elongated cells divide simultaneously. The new cells,
which contain a single nucleoid, develop into spores that give rise to new colonies.

L__{ Check Your Understanding

« |dentify at least one difference between fragmentation and budding.

Biofilms

In nature, microorganisms grow mainly in biofilms, complex and dynamic ecosystems that form on a variety of
environmental surfaces, from industrial conduits and water treatment pipelines to rocks in river beds. Biofilms are
not restricted to solid surface substrates, however. Almost any surface in a liquid environment containing some
minimal nutrients will eventually develop a biofilm. Microbial mats that float on water, for example, are biofilms
that contain large populations of photosynthetic microorganisms. Biofilms found in the human mouth may contain
hundreds of bacterial species. Regardless of the environment where they occur, biofilms are not random collections of
microorganisms; rather, they are highly structured communities that provide a selective advantage to their constituent
microorganisms.

Biofilm Structure

Observations using confocal microscopy have shown that environmental conditions influence the overall structure of
biofilms. Filamentous biofilms called streamers form in rapidly flowing water, such as freshwater streams, eddies,
and specially designed laboratory flow cells that replicate growth conditions in fast-moving fluids. The streamers are
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anchored to the substrate by a “head” and the “tail” floats downstream in the current. In still or slow-moving water,
biofilms mainly assume a mushroom-like shape. The structure of biofilms may also change with other environmental
conditions such as nutrient availability.

Detailed observations of biofilms under confocal laser and scanning electron microscopes reveal clusters of
microorganisms embedded in a matrix interspersed with open water channels. The extracellular matrix consists
of extracellular polymeric substances (EPS) secreted by the organisms in the biofilm. The extracellular matrix
represents a large fraction of the biofilm, accounting for 50%-90% of the total dry mass. The properties of the EPS
vary according to the resident organisms and environmental conditions.

EPS is a hydrated gel composed primarily of polysaccharides and containing other macromolecules such as proteins,
nucleic acids, and lipids. It plays a key role in maintaining the integrity and function of the biofilm. Channels in the
EPS allow movement of nutrients, waste, and gases throughout the biofilm. This keeps the cells hydrated, preventing
desiccation. EPS also shelters organisms in the biofilm from predation by other microbes or cells (e.g., protozoans,
white blood cells in the human body).

Biofilm Formation

Free-floating microbial cells that live in an aquatic environment are called planktonic cells. The formation of a
biofilm essentially involves the attachment of planktonic cells to a substrate, where they become sessile (attached to
a surface). This occurs in stages, as depicted in Figure 9.17. The first stage involves the attachment of planktonic
cells to a surface coated with a conditioning film of organic material. At this point, attachment to the substrate is
reversible, but as cells express new phenotypes that facilitate the formation of EPS, they transition from a planktonic
to a sessile lifestyle. The biofilm develops characteristic structures, including an extensive matrix and water channels.
Appendages such as fimbriae, pili, and flagella interact with the EPS, and microscopy and genetic analysis suggest
that such structures are required for the establishment of a mature biofilm. In the last stage of the biofilm life cycle,
cells on the periphery of the biofilm revert to a planktonic lifestyle, sloughing off the mature biofilm to colonize new
sites. This stage is referred to as dispersal.

Reversible First Growth and Production Attachment of

attachment colonizers cell division. of EPS and secondary

of planktonic become (hours, days) formation of colonizers and

cells. irreversibly water channels. dispersion of

(seconds) attached. (hours, days) microbes to
(second, new sites.
minutes) (days, months)

Figure 9.17 Stages in the formation and life cycle of a biofilm. (credit: modification of work by Public Library of
Science and American Society for Microbiology)

Within a biofilm, different species of microorganisms establish metabolic collaborations in which the waste product
of one organism becomes the nutrient for another. For example, aerobic microorganisms consume oxygen, creating
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anaerobic regions that promote the growth of anaerobes. This occurs in many polymicrobial infections that involve
both aerobic and anaerobic pathogens.

The mechanism by which cells in a biofilm coordinate their activities in response to environmental stimuli is called
quorum sensing. Quorum sensing—which can occur between cells of different species within a biofilm—enables
microorganisms to detect their cell density through the release and binding of small, diffusible molecules called
autoinducers. When the cell population reaches a critical threshold (a quorum), these autoinducers initiate a cascade
of reactions that activate genes associated with cellular functions that are beneficial only when the population reaches
a critical density. For example, in some pathogens, synthesis of virulence factors only begins when enough cells are
present to overwhelm the immune defenses of the host. Although mostly studied in bacterial populations, quorum
sensing takes place between bacteria and eukaryotes and between eukaryotic cells such as the fungus Candida
albicans, a common member of the human microbiota that can cause infections in immunocompromised individuals.

The signaling molecules in quorum sensing belong to two major classes. Gram-negative bacteria communicate mainly
using N-acylated homoserine lactones, whereas gram-positive bacteria mostly use small peptides (Figure 9.18). In
all cases, the first step in quorum sensing consists of the binding of the autoinducer to its specific receptor only when
a threshold concentration of signaling molecules is reached. Once binding to the receptor takes place, a cascade of
signaling events leads to changes in gene expression. The result is the activation of biological responses linked to
quorum sensing, notably an increase in the production of signaling molecules themselves, hence the term autoinducer.

o]
/Phe\ R )]\
Asp lle \N H
Ser. Cys Met
Tyr Thi  \ C/ o
A\
] o
short peptide N-acetylated

homoserine lactone

Figure 9.18 Short peptides in gram-positive bacteria and N-acetylated homoserine lactones in gram-negative
bacteria act as autoinducers in quorum sensing and mediate the coordinated response of bacterial cells. The R side
chain of the N-acetylated homoserine lactone is specific for the species of gram-negative bacteria. Some secreted
homoserine lactones are recognized by more than one species.

Biofilms and Human Health

The human body harbors many types of biofilms, some beneficial and some harmful. For example, the layers of
normal microbiota lining the intestinal and respiratory mucosa play a role in warding off infections by pathogens.
However, other biofilms in the body can have a detrimental effect on health. For example, the plaque that forms on
teeth is a biofilm that can contribute to dental and periodontal disease. Biofilms can also form in wounds, sometimes
causing serious infections that can spread. The bacterium Pseudomonas aeruginosa often colonizes biofilms in the
airways of patients with cystic fibrosis, causing chronic and sometimes fatal infections of the lungs. Biofilms can also
form on medical devices used in or on the body, causing infections in patients with in-dwelling catheters, artificial
joints, or contact lenses.

Pathogens embedded within biofilms exhibit a higher resistance to antibiotics than their free-floating counterparts.
Several hypotheses have been proposed to explain why. Cells in the deep layers of a biofilm are metabolically inactive
and may be less susceptible to the action of antibiotics that disrupt metabolic activities. The EPS may also slow
the diffusion of antibiotics and antiseptics, preventing them from reaching cells in the deeper layers of the biofilm.
Phenotypic changes may also contribute to the increased resistance exhibited by bacterial cells in biofilms. For
example, the increased production of efflux pumps, membrane-embedded proteins that actively extrude antibiotics out
of bacterial cells, have been shown to be an important mechanism of antibiotic resistance among biofilm-associated
bacteria. Finally, biofilms provide an ideal environment for the exchange of extrachromosomal DNA, which often
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includes genes that confer antibiotic resistance.

E/ Check Your Understanding

¢ What is the matrix of a biofilm composed of?

* What is the role of quorum sensing in a biofilm?

9.2 Oxygen Requirements for Microbial Growth

Learning Objectives

 Interpret visual data demonstrating minimum, optimum, and maximum oxygen or carbon dioxide requirements
for growth

* Identify and describe different categories of microbes with requirements for growth with or without oxygen:
obligate aerobe, obligate anaerobe, facultative anaerobe, aerotolerant anaerobe, microaerophile, and capnophile

» Give examples of microorganisms for each category of growth requirements

Ask most people “What are the major requirements for life?” and the answers are likely to include water and oxygen.
Few would argue about the need for water, but what about oxygen? Can there be life without oxygen?

The answer is that molecular oxygen (O5,) is not always needed. The earliest signs of life are dated to a period when
conditions on earth were highly reducing and free oxygen gas was essentially nonexistent. Only after cyanobacteria
started releasing oxygen as a byproduct of photosynthesis and the capacity of iron in the oceans for taking up oxygen
was exhausted did oxygen levels increase in the atmosphere. This event, often referred to as the Great Oxygenation
Event or the Oxygen Revolution, caused a massive extinction. Most organisms could not survive the powerful
oxidative properties of reactive oxygen species (ROS), highly unstable ions and molecules derived from partial
reduction of oxygen that can damage virtually any macromolecule or structure with which they come in contact.
Singlet oxygen (O,¢), superoxide (O,~), peroxides (H,O,), hydroxyl radical (OH*), and hypochlorite ion (OCI"),
the active ingredient of household bleach, are all examples of ROS. The organisms that were able to detoxify reactive
oxygen species harnessed the high electronegativity of oxygen to produce free energy for their metabolism and thrived
in the new environment.

Oxygen Requirements of Microorganisms

Many ecosystems are still free of molecular oxygen. Some are found in extreme locations, such as deep in the ocean
or in earth’s crust; others are part of our everyday landscape, such as marshes, bogs, and sewers. Within the bodies
of humans and other animals, regions with little or no oxygen provide an anaerobic environment for microorganisms.
(Figure 9.19).
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Figure 9.19 Anaerobic environments are still common on earth. They include environments like (a) a bog where
undisturbed dense sediments are virtually devoid of oxygen, and (b) the rumen (the first compartment of a cow’s
stomach), which provides an oxygen-free incubator for methanogens and other obligate anaerobic bacteria. (credit a:
modification of work by National Park Service; credit b: modification of work by US Department of Agriculture)

We can easily observe different requirements for molecular oxygen by growing bacteria in thioglycolate tube
cultures. A test-tube culture starts with autoclaved thieglycolate medium containing a low percentage of agar to
allow motile bacteria to move throughout the medium. Thioglycolate has strong reducing properties and autoclaving
flushes out most of the oxygen. The tubes are inoculated with the bacterial cultures to be tested and incubated at an
appropriate temperature. Over time, oxygen slowly diffuses throughout the thioglycolate tube culture from the top.
Bacterial density increases in the area where oxygen concentration is best suited for the growth of that particular
organism.

The growth of bacteria with varying oxygen requirements in thioglycolate tubes is illustrated in Figure 9.20. In tube
A, all the growth is seen at the top of the tube. The bacteria are obligate (strict) aerobes that cannot grow without
an abundant supply of oxygen. Tube B looks like the opposite of tube A. Bacteria grow at the bottom of tube B.
Those are obligate anaerobes, which are killed by oxygen. Tube C shows heavy growth at the top of the tube and
growth throughout the tube, a typical result with facultative anaerobes. Facultative anaerobes are organisms that
thrive in the presence of oxygen but also grow in its absence by relying on fermentation or anaerobic respiration, if
there is a suitable electron acceptor other than oxygen and the organism is able to perform anaerobic respiration. The
aerotolerant anaerobes in tube D are indifferent to the presence of oxygen. They do not use oxygen because they
usually have a fermentative metabolism, but they are not harmed by the presence of oxygen as obligate anaerobes are.
Tube E on the right shows a “Goldilocks” culture. The oxygen level has to be just right for growth, not too much and
not too little. These microaerophiles are bacteria that require a minimum level of oxygen for growth, about 1%—-10%,
well below the 21% found in the atmosphere.

Examples of obligate aerobes are Mycobacterium tuberculosis, the causative agent of tuberculosis and Micrococcus
luteus, a gram-positive bacterium that colonizes the skin. Neisseria meningitidis, the causative agent of severe
bacterial meningitis, and N. gonorrhoeae, the causative agent of sexually transmitted gonorrhea, are also obligate
aerobes.
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Figure 9.20 Diagram of bacterial cell distribution in thioglycolate tubes.

Many obligate anaerobes are found in the environment where anaerobic conditions exist, such as in deep sediments of
soil, still waters, and at the bottom of the deep ocean where there is no photosynthetic life. Anaerobic conditions also
exist naturally in the intestinal tract of animals. Obligate anaerobes, mainly Bacteroidetes, represent a large fraction
of the microbes in the human gut. Transient anaerobic conditions exist when tissues are not supplied with blood
circulation; they die and become an ideal breeding ground for obligate anaerobes. Another type of obligate anaerobe
encountered in the human body is the gram-positive, rod-shaped Clostridium spp. Their ability to form endospores
allows them to survive in the presence of oxygen. One of the major causes of health-acquired infections is C. difficile,
known as C. diff. Prolonged use of antibiotics for other infections increases the probability of a patient developing
a secondary C. difficile infection. Antibiotic treatment disrupts the balance of microorganisms in the intestine and
allows the colonization of the gut by C. difficile, causing a significant inflammation of the colon.

Other clostridia responsible for serious infections include C. tetani, the agent of tetanus, and C. perfringens, which
causes gas gangrene. In both cases, the infection starts in necrotic tissue (dead tissue that is not supplied with oxygen
by blood circulation). This is the reason that deep puncture wounds are associated with tetanus. When tissue death is
accompanied by lack of circulation, gangrene is always a danger.

The study of obligate anaerobes requires special equipment. Obligate anaerobic bacteria must be grown under
conditions devoid of oxygen. The most common approach is culture in an anaerobic jar (Figure 9.21). Anaerobic
jars include chemical packs that remove oxygen and release carbon dioxide (CO;). An anaerobic chamber is an
enclosed box from which all oxygen is removed. Gloves sealed to openings in the box allow handling of the cultures
without exposing the culture to air (Figure 9.21).
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Figure 9.21 (a) An anaerobic jar is pictured that is holding nine Petri plates supporting cultures. (b) Openings in the
side of an anaerobic box are sealed by glove-like sleeves that allow for the handling of cultures inside the box. (credit
a: modification of work by Centers for Disease Control and Prevention; credit b: modification of work by NIST)

Staphylococci and Enterobacteriaceae are examples of facultative anaerobes. Staphylococci are found on the skin
and upper respiratory tract. Enterobacteriaceae are found primarily in the gut and upper respiratory tract but can
sometimes spread to the urinary tract, where they are capable of causing infections. It is not unusual to see mixed
bacterial infections in which the facultative anaerobes use up the oxygen, creating an environment for the obligate
anaerobes to flourish.

Examples of aerotolerant anaerobes include lactobacilli and streptococci, both found in the oral microbiota.
Campylobacter jejuni, which causes gastrointestinal infections, is an example of a microaerophile and is grown under
low-oxygen conditions.

The optimum oxygen concentration, as the name implies, is the ideal concentration of oxygen for a particular
microorganism. The lowest concentration of oxygen that allows growth is called the minimum permissive oxygen
concentration. The highest tolerated concentration of oxygen is the maximum permissive oxygen concentration.
The organism will not grow outside the range of oxygen levels found between the minimum and maximum permissive
oxygen concentrations.

L_{ Check Your Understanding

¢ Would you expect the oldest bacterial lineages to be aerobic or anaerobic?

* Which bacteria grow at the top of a thioglycolate tube, and which grow at the bottom of the tube?

\

An Unwelcome Anaerobe

Charles is a retired bus driver who developed type 2 diabetes over 10 years ago. Since his retirement, his
lifestyle has become very sedentary and he has put on a substantial amount of weight. Although he has
felt tingling and numbness in his left foot for a while, he has not been worried because he thought his foot
was simply “falling asleep.” Recently, a scratch on his foot does not seem to be healing and is becoming
increasingly ugly. Because the sore did not bother him much, Charles figured it could not be serious until his
daughter noticed a purplish discoloration spreading on the skin and oozing (Figure 9.22). When he was finally
seen by his physician, Charles was rushed to the operating room. His open sore, or ulcer, is the result of a
diabetic foot.

- J
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The concern here is that gas gangrene may have taken hold in the dead tissue. The most likely agent of
gas gangrene is Clostridium perfringens, an endospore-forming, gram-positive bacterium. It is an obligate
anaerobe that grows in tissue devoid of oxygen. Since dead tissue is no longer supplied with oxygen by the
circulatory system, the dead tissue provides pockets of ideal environment for the growth of C. perfringens.

A surgeon examines the ulcer and radiographs of Charles’s foot and determines that the bone is not yet
infected. The wound will have to be surgically debrided (debridement refers to the removal of dead and infected
tissue) and a sample sent for microbiological lab analysis, but Charles will not have to have his foot amputated.
Many diabetic patients are not so lucky. In 2008, nearly 70,000 diabetic patients in the United States lost a foot
or limb to amputation, according to statistics from the Centers for Disease Control and Prevention.!!

* Which growth conditions would you recommend for the detection of C. perfringens?

Figure 9.22 This clinical photo depicts ulcers on the foot of a diabetic patient. Dead tissue accumulating in
ulcers can provide an ideal growth environment for the anaerobe C. perfringens, a causative agent of gas
gangrene. (credit: Shigeo Kono, Reiko Nakagawachi, Jun Arata, Benjamin A Lipsky)

- J

Detoxification of Reactive Oxygen Species

Aerobic respiration constantly generates reactive oxygen species (ROS), byproducts that must be detoxified. Even
organisms that do not use aerobic respiration need some way to break down some of the ROS that may form from
atmospheric oxygen. Three main enzymes break down those toxic byproducts: superoxide dismutase, peroxidase, and
catalase. Each one catalyzes a different reaction. Reactions of type seen in Reaction 1 are catalyzed by peroxidases.

(1)  X-@2H%+H,0, - oxidized-X + 2H, 0

In these reactions, an electron donor (reduced compound; e.g., reduced nicotinamide adenine dinucleotide [NADH])
oxidizes hydrogen peroxide, or other peroxides, to water. The enzymes play an important role by limiting the damage
caused by peroxidation of membrane lipids. Reaction 2 is mediated by the enzyme superoxide dismutase (SOD) and
breaks down the powerful superoxide anions generated by aerobic metabolism:

(2) 20*”+2H' - H,0,+0,
The enzyme catalase converts hydrogen peroxide to water and oxygen as shown in Reaction 3.
(3) 2H202 g 2H20+02

Obligate anaerobes usually lack all three enzymes. Aerotolerant anaerobes do have SOD but no catalase. Reaction

1. Centers for Disease Control and Prevention. “Living With Diabetes: Keep Your Feet Healthy.” http://www.cdc.gov/Features/
DiabetesFootHealth/
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3, shown occurring in Figure 9.23, is the basis of a useful and rapid test to distinguish streptococci, which are
aerotolerant and do not possess catalase, from staphylococci, which are facultative anaerobes. A sample of culture
rapidly mixed in a drop of 3% hydrogen peroxide will release bubbles if the culture is catalase positive.

Catalase — Catalase +

Figure 9.23 The catalase test detects the presence of the enzyme catalase by noting whether bubbles are released
when hydrogen peroxide is added to a culture sample. Compare the positive result (right) with the negative result
(left). (credit: Centers for Disease Control and Prevention)

Bacteria that grow best in a higher concentration of CO, and a lower concentration of oxygen than present in the
atmosphere are called capnophiles. One common approach to grow capnophiles is to use a candle jar. A candle jar
consists of a jar with a tight-fitting lid that can accommodate the cultures and a candle. After the cultures are added to
the jar, the candle is lit and the lid closed. As the candle burns, it consumes most of the oxygen present and releases
CO..

|”_{ Check Your Understanding

¢ What substance is added to a sample to detect catalase?

¢ What is the function of the candle in a candle jar?

Clinical Focus

Part 2

The health-care provider who saw Jeni was concerned primarily because of her pregnancy. Her condition
enhances the risk for infections and makes her more vulnerable to those infections. The immune system
is downregulated during pregnancy, and pathogens that cross the placenta can be very dangerous for the
fetus. A note on the provider’s order to the microbiology lab mentions a suspicion of infection by Listeria
monocytogenes, based on the signs and symptoms exhibited by the patient.

Jeni's blood samples are streaked directly on sheep blood agar, a medium containing tryptic soy agar
enriched with 5% sheep blood. (Blood is considered sterile; therefore, competing microorganisms are not
expected in the medium.) The inoculated plates are incubated at 37 °C for 24 to 48 hours. Small grayish
colonies surrounded by a clear zone emerge. Such colonies are typical of Listeria and other pathogens such
as streptococci; the clear zone surrounding the colonies indicates complete lysis of blood in the medium,
referred to as beta-hemolysis (Figure 9.24). When tested for the presence of catalase, the colonies give a
positive response, eliminating Streptococcus as a possible cause. Furthermore, a Gram stain shows short
gram-positive bacilli. Cells from a broth culture grown at room temperature displayed the tumbling motility

- J
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characteristic of Listeria (Figure 9.24). All of these clues lead the lab to positively confirm the presence of
Listeria in Jeni's blood samples.

* How serious is Jeni's condition and what is the appropriate treatment?

positive negative

beta
_hemolysis

(@) (b)

Figure 9.24 (a) A sample blood agar test showing beta-hemolysis. (b) A sample motility test showing both
positive and negative results. (credit a: modification of work by Centers for Disease Control and Prevention;
credit b: modification of work by “VeeDunn"/Flickr)

Jump to the next Clinical Focus box. Go back to the previous Clinical Focus box.

N

\

9.3 The Effects of pH on Microbial Growth

Learning Objectives
* Ilustrate and briefly describe minimum, optimum, and maximum pH requirements for growth

« Identify and describe the different categories of microbes with pH requirements for growth: acidophiles,
neutrophiles, and alkaliphiles

» Give examples of microorganisms for each category of pH requirement

Yogurt, pickles, sauerkraut, and lime-seasoned dishes all owe their tangy taste to a high acid content (Figure 9.25).
Recall that acidity is a function of the concentration of hydrogen ions [H*] and is measured as pH. Environments with
pH values below 7.0 are considered acidic, whereas those with pH values above 7.0 are considered basic. Extreme
pH affects the structure of all macromolecules. The hydrogen bonds holding together strands of DNA break up at
high pH. Lipids are hydrolyzed by an extremely basic pH. The proton motive force responsible for production of
ATP in cellular respiration depends on the concentration gradient of H* across the plasma membrane (see Cellular
Respiration). If H" ions are neutralized by hydroxide ions, the concentration gradient collapses and impairs energy
production. But the component most sensitive to pH in the cell is its workhorse, the protein. Moderate changes in
pH modify the ionization of amino-acid functional groups and disrupt hydrogen bonding, which, in turn, promotes

changes in the folding of the molecule, promoting denaturation and destroying activity.
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Figure 9.25 Lactic acid bacteria that ferment milk into yogurt or transform vegetables in pickles thrive at a pH close
to 4.0. Sauerkraut and dishes such as pico de gallo owe their tangy flavor to their acidity. Acidic foods have been a
mainstay of the human diet for centuries, partly because most microbes that cause food spoilage grow best at a near
neutral pH and do not tolerate acidity well. (credit “yogurt”: modification of work by “nina.jsc”/Flickr; credit “pickles”:
modification of work by Noah Sussman; credit “sauerkraut”: modification of work by Jesse LaBuff; credit “pico de
gallo”: modification of work by “regan76”/Flickr)

The optimum growth pH is the most favorable pH for the growth of an organism. The lowest pH value that an
organism can tolerate is called the minimum growth pH and the highest pH is the maximum growth pH. These
values can cover a wide range, which is important for the preservation of food and to microorganisms’ survival in the
stomach. For example, the optimum growth pH of Salmonella spp. is 7.0-7.5, but the minimum growth pH is closer
to 4.2.

Most bacteria are neutrophiles, meaning they grow optimally at a pH within one or two pH units of the neutral
pH of 7 (see Figure 9.26). Most familiar bacteria, like Escherichia coli, staphylococci, and Salmonella spp. are
neutrophiles and do not fare well in the acidic pH of the stomach. However, there are pathogenic strains of E. coli,
S. typhi, and other species of intestinal pathogens that are much more resistant to stomach acid. In comparison, fungi
thrive at slightly acidic pH values of 5.0-6.0.

Microorganisms that grow optimally at pH less than 5.55 are called acidophiles. For example, the sulfur-oxidizing
Sulfolobus spp. isolated from sulfur mud fields and hot springs in Yellowstone National Park are extreme acidophiles.
These archaea survive at pH values of 2.5-3.5. Species of the archaean genus Ferroplasma live in acid mine drainage
at pH values of 0-2.9. Lactobacillus bacteria, which are an important part of the normal microbiota of the vagina, can
tolerate acidic environments at pH values 3.5-6.8 and also contribute to the acidity of the vagina (pH of 4, except at
the onset of menstruation) through their metabolic production of lactic acid. The vagina’s acidity plays an important
role in inhibiting other microbes that are less tolerant of acidity. Acidophilic microorganisms display a number of
adaptations to survive in strong acidic environments. For example, proteins show increased negative surface charge
that stabilizes them at low pH. Pumps actively eject H* ions out of the cells. The changes in the composition of
membrane phospholipids probably reflect the need to maintain membrane fluidity at low pH.
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Figure 9.26 The curves show the approximate pH ranges for the growth of the different classes of pH-specific
prokaryotes. Each curve has an optimal pH and extreme pH values at which growth is much reduced. Most bacteria
are neutrophiles and grow best at near-neutral pH (center curve). Acidophiles have optimal growth at pH values near
3 and alkaliphiles have optimal growth at pH values above 9.

At the other end of the spectrum are alkaliphiles, microorganisms that grow best at pH between 8.0 and 10.5. Vibrio
cholerae, the pathogenic agent of cholera, grows best at the slightly basic pH of 8.0; it can survive pH values of
11.0 but is inactivated by the acid of the stomach. When it comes to survival at high pH, the bright pink archaean
Natronobacterium, found in the soda lakes of the African Rift Valley, may hold the record at a pH of 10.5 (Figure
9.27). Extreme alkaliphiles have adapted to their harsh environment through evolutionary modification of lipid and
protein structure and compensatory mechanisms to maintain the proton motive force in an alkaline environment. For
example, the alkaliphile Bacillus firmus derives the energy for transport reactions and motility from a Na* ion gradient
rather than a proton motive force. Many enzymes from alkaliphiles have a higher isoelectric point, due to an increase
in the number of basic amino acids, than homologous enzymes from neutrophiles.

Figure 9.27 View from space of Lake Natron in Tanzania. The pink color is due to the pigmentation of the extreme
alkaliphilic and halophilic microbes that colonize the lake. (credit: NASA)



388 Chapter 9 | Microbial Growth

\

Survival at the Low pH of the Stomach

Peptic ulcers (or stomach ulcers) are painful sores on the stomach lining. Until the 1980s, they were believed to
be caused by spicy foods, stress, or a combination of both. Patients were typically advised to eat bland foods,
take anti-acid medications, and avoid stress. These remedies were not particularly effective, and the condition
often recurred. This all changed dramatically when the real cause of most peptic ulcers was discovered to be
a slim, corkscrew-shaped bacterium, Helicobacter pylori. This organism was identified and isolated by Barry
Marshall and Robin Warren, whose discovery earned them the Nobel Prize in Medicine in 2005.

The ability of H. pylori to survive the low pH of the stomach would seem to suggest that it is an extreme
acidophile. As it turns out, this is not the case. In fact, H. pylori is a neutrophile. So, how does it survive in
the stomach? Remarkably, H. pylori creates a microenvironment in which the pH is nearly neutral. It achieves
this by producing large amounts of the enzyme urease, which breaks down urea to form NH,* and CO,. The
ammonium ion raises the pH of the immediate environment.

This metabolic capability of H. pylori is the basis of an accurate, noninvasive test for infection. The patient is
given a solution of urea containing radioactively labeled carbon atoms. If H. pylori is present in the stomach,
it will rapidly break down the urea, producing radioactive CO, that can be detected in the patient’s breath.
Because peptic ulcers may lead to gastric cancer, patients who are determined to have H. pylori infections are
treated with antibiotics.

|”_{ Check Your Understanding

* What effect do extremes of pH have on proteins?

¢ What pH-adaptive type of bacteria would most human pathogens be?

9.4 Temperature and Microbial Growth

Learning Objectives
 Tllustrate and briefly describe minimum, optimum, and maximum temperature requirements for growth

* Identify and describe different categories of microbes with temperature requirements for growth: psychrophile,
psychrotrophs, mesophile, thermophile, hyperthermophile

» Give examples of microorganisms in each category of temperature tolerance

When the exploration of Lake Whillans started in Antarctica, researchers did not expect to find much life. Constant
subzero temperatures and lack of obvious sources of nutrients did not seem to be conditions that would support
a thriving ecosystem. To their surprise, the samples retrieved from the lake showed abundant microbial life. In a
different but equally harsh setting, bacteria grow at the bottom of the ocean in sea vents (Figure 9.28), where
temperatures can reach 340 °C (700 °F).

Microbes can be roughly classified according to the range of temperature at which they can grow. The growth rates
are the highest at the optimum growth temperature for the organism. The lowest temperature at which the organism
can survive and replicate is its minimum growth temperature. The highest temperature at which growth can occur is
its maximum growth temperature. The following ranges of permissive growth temperatures are approximate only
and can vary according to other environmental factors.

Organisms categorized as mesophiles (“middle loving”) are adapted to moderate temperatures, with optimal growth
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temperatures ranging from room temperature (about 20 °C) to about 45 °C. As would be expected from the core
temperature of the human body, 37 °C (98.6 °F), normal human microbiota and pathogens (e.g., E. coli, Salmonella
spp., and Lactobacillus spp.) are mesophiles.

Organisms called psychrotrophs, also known as psychrotolerant, prefer cooler environments, from a high
temperature of 25 °C to refrigeration temperature about 4 °C. They are found in many natural environments in
temperate climates. They are also responsible for the spoilage of refrigerated food.

Clinical Focus

Resolution

The presence of Listeria in Jeni's blood suggests that her symptoms are due to listeriosis, an infection caused
by L. monocytogenes. Listeriosis is a serious infection with a 20% mortality rate and is a particular risk to Jeni’s
fetus. A sample from the amniotic fluid cultured for the presence of Listeria gave negative results. Because
the absence of organisms does not rule out the possibility of infection, a molecular test based on the nucleic
acid amplification of the 16S ribosomal RNA of Listeria was performed to confirm that no bacteria crossed the
placenta. Fortunately, the results from the molecular test were also negative.

Jeni was admitted to the hospital for treatment and recovery. She received a high dose of two antibiotics
intravenously for 2 weeks. The preferred drugs for the treatment of listeriosis are ampicillin or penicillin G with
an aminoglycoside antibiotic. Resistance to common antibiotics is still rare in Listeria and antibiotic treatment
is usually successful. She was released to home care after a week and fully recovered from her infection.

L. monocytogenes is a gram-positive short rod found in soil, water, and food. It is classified as a psychrophile
and is halotolerant. Its ability to multiply at refrigeration temperatures (4—10 °C) and its tolerance for high
concentrations of salt (up to 10% sodium chloride [NaCl]) make it a frequent source of food poisoning. Because
Listeria can infect animals, it often contaminates food such as meat, fish, or dairy products. Contamination of
commercial foods can often be traced to persistent biofilms that form on manufacturing equipment that is not
sufficiently cleaned.

Listeria infection is relatively common among pregnant women because the elevated levels of progesterone
downregulate the immune system, making them more vulnerable to infection. The pathogen can cross the
placenta and infect the fetus, often resulting in miscarriage, stillbirth, or fatal neonatal infection. Pregnant
women are thus advised to avoid consumption of soft cheeses, refrigerated cold cuts, smoked seafood, and
unpasteurized dairy products. Because Listeria bacteria can easily be confused with diphtheroids, another
common group of gram-positive rods, it is important to alert the laboratory when listeriosis is suspected.

Go back to the previous Clinical Focus box.

. J

The organisms retrieved from arctic lakes such as Lake Whillans are considered extreme psychrophiles (cold loving).
Psychrophiles are microorganisms that can grow at 0 °C and below, have an optimum growth temperature close to
15 °C, and usually do not survive at temperatures above 20 °C. They are found in permanently cold environments
such as the deep waters of the oceans. Because they are active at low temperature, psychrophiles and psychrotrophs
are important decomposers in cold climates.

Organisms that grow at optimum temperatures of 50 °C to a maximum of 80 °C are called thermophiles (“heat
loving”). They do not multiply at room temperature. Thermophiles are widely distributed in hot springs, geothermal
soils, and manmade environments such as garden compost piles where the microbes break down kitchen scraps
and vegetal material. Examples of thermophiles include Thermus aquaticus and Geobacillus spp. Higher up on the
extreme temperature scale we find the hyperthermophiles, which are characterized by growth ranges from 80 °C to
a maximum of 110 °C, with some extreme examples that survive temperatures above 121 °C, the average temperature
of an autoclave. The hydrothermal vents at the bottom of the ocean are a prime example of extreme environments,
with temperatures reaching an estimated 340 °C (Figure 9.28). Microbes isolated from the vents achieve optimal
growth at temperatures higher than 100 °C. Noteworthy examples are Pyrobolus and Pyrodictium, archaea that grow
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at 105 °C and survive autoclaving. Figure 9.29 shows the typical skewed curves of temperature-dependent growth
for the categories of microorganisms we have discussed.

Figure 9.28 A black smoker at the bottom of the ocean belches hot, chemical-rich water, and heats the surrounding
waters. Sea vents provide an extreme environment that is nonetheless teeming with macroscopic life (the red
tubeworms) supported by an abundant microbial ecosystem. (credit: NOAA)
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Figure 9.29 The graph shows growth rate of bacteria as a function of temperature. Notice that the curves are
skewed toward the optimum temperature. The skewing of the growth curve is thought to reflect the rapid denaturation
of proteins as the temperature rises past the optimum for growth of the microorganism.

Life in extreme environments raises fascinating questions about the adaptation of macromolecules and metabolic
processes. Very low temperatures affect cells in many ways. Membranes lose their fluidity and are damaged by
ice crystal formation. Chemical reactions and diffusion slow considerably. Proteins become too rigid to catalyze
reactions and may undergo denaturation. At the opposite end of the temperature spectrum, heat denatures proteins
and nucleic acids. Increased fluidity impairs metabolic processes in membranes. Some of the practical applications of
the destructive effects of heat on microbes are sterilization by steam, pasteurization, and incineration of inoculating
loops. Proteins in psychrophiles are, in general, rich in hydrophobic residues, display an increase in flexibility, and
have a lower number of secondary stabilizing bonds when compared with homologous proteins from mesophiles.
Antifreeze proteins and solutes that decrease the freezing temperature of the cytoplasm are common. The lipids in
the membranes tend to be unsaturated to increase fluidity. Growth rates are much slower than those encountered
at moderate temperatures. Under appropriate conditions, mesophiles and even thermophiles can survive freezing.
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Liquid cultures of bacteria are mixed with sterile glycerol solutions and frozen to —80 °C for long-term storage as
stocks. Cultures can withstand freeze drying (lyophilization) and then be stored as powders in sealed ampules to be
reconstituted with broth when needed.

Macromolecules in thermophiles and hyperthermophiles show some notable structural differences from what is
observed in the mesophiles. The ratio of saturated to polyunsaturated lipids increases to limit the fluidity of the
cell membranes. Their DNA sequences show a higher proportion of guanine—cytosine nitrogenous bases, which
are held together by three hydrogen bonds in contrast to adenine and thymine, which are connected in the double
helix by two hydrogen bonds. Additional secondary ionic and covalent bonds, as well as the replacement of key
amino acids to stabilize folding, contribute to the resistance of proteins to denaturation. The so-called thermoenzymes
purified from thermophiles have important practical applications. For example, amplification of nucleic acids in the
polymerase chain reaction (PCR) depends on the thermal stability of Taq polymerase, an enzyme isolated from T.
aquaticus. Degradation enzymes from thermophiles are added as ingredients in hot-water detergents, increasing their
effectiveness.

\C{ Check Your Understanding

* What temperature requirements do most bacterial human pathogens have?

¢ What DNA adaptation do thermophiles exhibit?

Eye on Ethics

SIGMA XI

THE SCIENTIFIC RESEARCH SOCIETY

Feeding the World...and the World’s Algae

Artificial fertilizers have become an important tool in food production around the world. They are responsible
for many of the gains of the so-called green revolution of the 20th century, which has allowed the planet to
feed many of its more than 7 billion people. Artificial fertilizers provide nitrogen and phosphorus, key limiting
nutrients, to crop plants, removing the normal barriers that would otherwise limit the rate of growth. Thus,
fertilized crops grow much faster, and farms that use fertilizer produce higher crop yields.

However, careless use and overuse of artificial fertilizers have been demonstrated to have significant negative
impacts on aquatic ecosystems, both freshwater and marine. Fertilizers that are applied at inappropriate times
or in too-large quantities allow nitrogen and phosphorus compounds to escape use by crop plants and enter
drainage systems. Inappropriate use of fertilizers in residential settings can also contribute to nutrient loads,
which find their way to lakes and coastal marine ecosystems. As water warms and nutrients are plentiful,
microscopic algae bloom, often changing the color of the water because of the high cell density.

Most algal blooms are not directly harmful to humans or wildlife; however, they can cause harm indirectly. As
the algal population expands and then dies, it provides a large increase in organic matter to the bacteria that
live in deep water. With this large supply of nutrients, the population of nonphotosynthetic microorganisms
explodes, consuming available oxygen and creating “dead zones” where animal life has virtually disappeared.

Depletion of oxygen in the water is not the only damaging consequence of some algal blooms. The algae
that produce red tides in the Gulf of Mexico, Karenia brevis, secrete potent toxins that can kill fish and
other organisms and also accumulate in shellfish. Consumption of contaminated shellfish can cause severe
neurological and gastrointestinal symptoms in humans. Shellfish beds must be regularly monitored for the
presence of the toxins, and harvests are often shut down when it is present, incurring economic costs to the
fishery. Cyanobacteria, which can form blooms in marine and freshwater ecosystems, produce toxins called
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microcystins, which can cause allergic reactions and liver damage when ingested in drinking water or during
swimming. Recurring cyanobacterial algal blooms in Lake Erie (Figure 9.30) have forced municipalities to
issue drinking water bans for days at a time because of unacceptable toxin levels.

This is just a small sampling of the negative consequences of algal blooms, red tides, and dead zones. Yet the
benefits of crop fertilizer—the main cause of such blooms—are difficult to dispute. There is no easy solution
to this dilemma, as a ban on fertilizers is not politically or economically feasible. In lieu of this, we must
advocate for responsible use and regulation in agricultural and residential contexts, as well as the restoration
of wetlands, which can absorb excess fertilizers before they reach lakes and oceans.

Lake Erie

Figure 9.30 Heavy rains cause runoff of fertilizers into Lake Erie, triggering extensive algal blooms, which
can be observed along the shoreline. Notice the brown unplanted and green planted agricultural land on the
shore. (credit: NASA)
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I N This video (https:/lopenstax.org/l/22algaebloomvid) discusses algal blooms
and dead zones in more depth.
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9.5 Other Environmental Conditions that Affect Growth

Learning Objectives

* Identify and describe different categories of microbes with specific growth requirements other than oxygen, pH,
and temperature, such as altered barometric pressure, osmotic pressure, humidity, and light

 Give at least one example microorganism for each category of growth requirement

Microorganisms interact with their environment along more dimensions than pH, temperature, and free oxygen levels,
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although these factors require significant adaptations. We also find microorganisms adapted to varying levels of
salinity, barometric pressure, humidity, and light.

Osmotic and Barometric Pressure

Most natural environments tend to have lower solute concentrations than the cytoplasm of most microorganisms.
Rigid cell walls protect the cells from bursting in a dilute environment. Not much protection is available against
high osmotic pressure. In this case, water, following its concentration gradient, flows out of the cell. This results
in plasmolysis (the shrinking of the protoplasm away from the intact cell wall) and cell death. This fact explains
why brines and layering meat and fish in salt are time-honored methods of preserving food. Microorganisms called
halophiles (“salt loving”) actually require high salt concentrations for growth. These organisms are found in marine
environments where salt concentrations hover at 3.5%. Extreme halophilic microorganisms, such as the red alga
Dunaliella salina and the archaeal species Halobacterium in Figure 9.31, grow in hypersaline lakes such as the
Great Salt Lake, which is 3.5-8 times saltier than the ocean, and the Dead Sea, which is 10 times saltier than the
ocean.

Figure 9.31 Photograph taken from space of the Great Salt Lake in Utah. The purple color is caused by high density
of the alga Dunaliella and the archaean Halobacterium spp. (credit: NASA)

Dunaliella spp. counters the tremendous osmotic pressure of the environment with a high cytoplasmic concentration
of glycerol and by actively pumping out salt ions. Halobacterium spp. accumulates large concentrations of K* and
other ions in its cytoplasm. Its proteins are designed for high salt concentrations and lose activity at salt concentrations
below 1-2 M. Although most halotolerant organisms, for example Halomonas spp. in salt marshes, do not need
high concentrations of salt for growth, they will survive and divide in the presence of high salt. Not surprisingly, the
staphylococci, micrococci, and corynebacteria that colonize our skin tolerate salt in their environment. Halotolerant
pathogens are an important cause of food-borne illnesses because they survive and multiply in salty food. For
example, the halotolerant bacteria S. aureus, Bacillus cereus, and V. cholerae produce dangerous enterotoxins and are
major causes of food poisoning.

Microorganisms depend on available water to grow. Available moisture is measured as water activity (a,,), which is
the ratio of the vapor pressure of the medium of interest to the vapor pressure of pure distilled water; therefore, the
a,, of water is equal to 1.0. Bacteria require high a,, (0.97-0.99), whereas fungi can tolerate drier environments; for
example, the range of a,, for growth of Aspergillus spp. is 0.8-0.75. Decreasing the water content of foods by drying,
as in jerky, or through freeze-drying or by increasing osmotic pressure, as in brine and jams, are common methods of
preventing spoilage.
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Microorganisms that require high atmospheric pressure for growth are called barophiles. The bacteria that live at the
bottom of the ocean must be able to withstand great pressures. Because it is difficult to retrieve intact specimens and
reproduce such growth conditions in the laboratory, the characteristics of these microorganisms are largely unknown.

Light

Photoautotrophs, such as cyanobacteria or green sulfur bacteria, and photoheterotrophs, such as purple nonsulfur
bacteria, depend on sufficient light intensity at the wavelengths absorbed by their pigments to grow and multiply.
Energy from light is captured by pigments and converted into chemical energy that drives carbon fixation and other
metabolic processes. The portion of the electromagnetic spectrum that is absorbed by these organisms is defined
as photosynthetically active radiation (PAR). It lies within the visible light spectrum ranging from 400 to 700
nanometers (nm) and extends in the near infrared for some photosynthetic bacteria. A number of accessory pigments,
such as fucoxanthin in brown algae and phycobilins in cyanobacteria, widen the useful range of wavelengths for
photosynthesis and compensate for the low light levels available at greater depths of water. Other microorganisms,
such as the archaea of the class Halobacteria, use light energy to drive their proton and sodium pumps. The light
is absorbed by a pigment protein complex called bacteriorhodopsin, which is similar to the eye pigment rhodopsin.
Photosynthetic bacteria are present not only in aquatic environments but also in soil and in symbiosis with fungi
in lichens. The peculiar watermelon snow is caused by a microalga Chlamydomonas nivalis, a green alga rich in a
secondary red carotenoid pigment (astaxanthin) which gives the pink hue to the snow where the alga grows.

|”_{ Check Your Understanding

¢ Which photosynthetic pigments were described in this section?

¢ What is the fundamental stress of a hypersaline environment for a cell?

9.6 Media Used for Bacterial Growth

Learning Objectives

« Identify and describe culture media for the growth of bacteria, including examples of all-purpose media,
enriched, selective, differential, defined, and enrichment media

The study of microorganisms is greatly facilitated if we are able to culture them, that is, to keep reproducing
populations alive under laboratory conditions. Culturing many microorganisms is challenging because of highly
specific nutritional and environmental requirements and the diversity of these requirements among different species.

Nutritional Requirements

The number of available media to grow bacteria is considerable. Some media are considered general all-purpose
media and support growth of a large variety of organisms. A prime example of an all-purpose medium is tryptic
soy broth (TSB). Specialized media are used in the identification of bacteria and are supplemented with dyes, pH
indicators, or antibiotics. One type, enriched media, contains growth factors, vitamins, and other essential nutrients
to promote the growth of fastidious erganisms, organisms that cannot make certain nutrients and require them to
be added to the medium. When the complete chemical composition of a medium is known, it is called a chemically
defined medium. For example, in EZ medium, all individual chemical components are identified and the exact
amounts of each is known. In complex media, which contain extracts and digests of yeasts, meat, or plants, the
precise chemical composition of the medium is not known. Amounts of individual components are undetermined and
variable. Nutrient broth, tryptic soy broth, and brain heart infusion, are all examples of complex media.

Media that inhibit the growth of unwanted microorganisms and support the growth of the organism of interest by
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supplying nutrients and reducing competition are called selective media. An example of a selective medium is
MacConkey agar. It contains bile salts and crystal violet, which interfere with the growth of many gram-positive
bacteria and favor the growth of gram-negative bacteria, particularly the Enterobacteriaceae. These species are
commonly named enterics, reside in the intestine, and are adapted to the presence of bile salts. The enrichment
cultures foster the preferential growth of a desired microorganism that represents a fraction of the organisms present
in an inoculum. For example, if we want to isolate bacteria that break down crude oil, hydrocarbonoclastic bacteria,
sequential subculturing in a medium that supplies carbon only in the form of crude oil will enrich the cultures with
oil-eating bacteria. The differential media make it easy to distinguish colonies of different bacteria by a change
in the color of the colonies or the color of the medium. Color changes are the result of end products created by
interaction of bacterial enzymes with differential substrates in the medium or, in the case of hemolytic reactions, the
lysis of red blood cells in the medium. In Figure 9.32, the differential fermentation of lactose can be observed on
MacConkey agar. The lactose fermenters produce acid, which turns the medium and the colonies of strong fermenters
hot pink. The medium is supplemented with the pH indicator neutral red, which turns to hot pink at low pH. Selective
and differential media can be combined and play an important role in the identification of bacteria by biochemical
methods.

#7g © Miller and Hanley

Figure 9.32 On this MacConkey agar plate, the lactose-fermenter E. coli colonies are bright pink. Serratia
marcescens, which does not ferment lactose, forms a cream-colored streak on the tan medium. (credit: American
Society for Microbiology)

D Check Your Understanding

» Distinguish complex and chemically defined media.

 Distinguish selective and enrichment media.

Link to Learning
~

I N Compare the compositions of EZ medium (https://lopenstax.org/l/

0p@ 22EZMedium) and sheep blood (https://lopenstax.org/li22bloodagar) agar.
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The microbiology department is celebrating the end of the school year in May by holding its traditional picnic
on the green. The speeches drag on for a couple of hours, but finally all the faculty and students can dig into
the food: chicken salad, tomatoes, onions, salad, and custard pie. By evening, the whole department, except
for two vegetarian students who did not eat the chicken salad, is stricken with nausea, vomiting, retching, and
abdominal cramping. Several individuals complain of diarrhea. One patient shows signs of shock (low blood
pressure). Blood and stool samples are collected from patients, and an analysis of all foods served at the meal
is conducted.

Bacteria can cause gastroenteritis (inflammation of the stomach and intestinal tract) either by colonizing and
replicating in the host, which is considered an infection, or by secreting toxins, which is considered intoxication.
Signs and symptoms of infections are typically delayed, whereas intoxication manifests within hours, as
happened after the picnic.

Blood samples from the patients showed no signs of bacterial infection, which further suggests that this was
a case of intoxication. Since intoxication is due to secreted toxins, bacteria are not usually detected in blood
or stool samples. MacConkey agar and sorbitol-MacConkey agar plates and xylose-lysine-deoxycholate (XLD)
plates were inoculated with stool samples and did not reveal any unusually colored colonies, and no black
colonies or white colonies were observed on XLD. All lactose fermenters on MacConkey agar also ferment
sorbitol. These results ruled out common agents of food-borne ilinesses: E. coli, Salmonella spp., and Shigella

spp.
Analysis of the chicken salad revealed an abnormal number of gram-positive cocci arranged in clusters (Figure
9.33). A culture of the gram-positive cocci releases bubbles when mixed with hydrogen peroxide. The culture
turned mannitol salt agar yellow after a 24-hour incubation.

All the tests point to Staphylococcus aureus as the organism that secreted the toxin. Samples from the salad
showed the presence of gram-positive cocci bacteria in clusters. The colonies were positive for catalase. The
bacteria grew on mannitol salt agar fermenting mannitol, as shown by the change to yellow of the medium.
The pH indicator in mannitol salt agar is phenol red, which turns to yellow when the medium is acidified by the
products of fermentation.

The toxin secreted by S. aureus is known to cause severe gastroenteritis. The organism was probably
introduced into the salad during preparation by the food handler and multiplied while the salad was kept in the
warm ambient temperature during the speeches.

* What are some other factors that might have contributed to rapid growth of S. aureus in the chicken
salad?

* Why would S. aureus not be inhibited by the presence of salt in the chicken salad?
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4 I
Figure 9.33 Gram-positive cocci in clusters. (credit: Centers for Disease Control and Prevention)
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Summary

9.1 How Microbes Grow

Most bacterial cells divide by binary fission. Generation time in bacterial growth is defined as the doubling
time of the population.

Cells in a closed system follow a pattern of growth with four phases: lag, logarithmic (exponential),
stationary, and death.

Cells can be counted by direct viable cell count. The pour plate and spread plate methods are used to
plate serial dilutions into or onto, respectively, agar to allow counting of viable cells that give rise to colony-
forming units. Membrane filtration is used to count live cells in dilute solutions. The most probable cell
number (MPN) method allows estimation of cell numbers in cultures without using solid media.

Indirect methods can be used to estimate culture density by measuring turbidity of a culture or live cell
density by measuring metabolic activity.

Other patterns of cell division include multiple nucleoid formation in cells; asymmetric division, as in
budding; and the formation of hyphae and terminal spores.

Biofilms are communities of microorganisms enmeshed in a matrix of extracellular polymeric substance.
The formation of a biofilm occurs when planktonic cells attach to a substrate and become sessile. Cells in
biofilms coordinate their activity by communicating through quorum sensing.

Biofilms are commonly found on surfaces in nature and in the human body, where they may be beneficial
or cause severe infections. Pathogens associated with biofilms are often more resistant to antibiotics and
disinfectants.

9.2 Oxygen Requirements for Microbial Growth

Aerobic and anaerobic environments can be found in diverse niches throughout nature, including different
sites within and on the human body.

Microorganisms vary in their requirements for molecular oxygen. Obligate aerobes depend on aerobic
respiration and use oxygen as a terminal electron acceptor. They cannot grow without oxygen.

Obligate anaerobes cannot grow in the presence of oxygen. They depend on fermentation and anaerobic
respiration using a final electron acceptor other than oxygen.

Facultative anaerobes show better growth in the presence of oxygen but will also grow without it.
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Although aerotolerant anaerobes do not perform aerobic respiration, they can grow in the presence of
oxygen. Most aerotolerant anaerobes test negative for the enzyme catalase.

Microaerophiles need oxygen to grow, albeit at a lower concentration than 21% oxygen in air.

Optimum oxygen concentration for an organism is the oxygen level that promotes the fastest growth rate.
The minimum permissive oxygen concentration and the maximum permissive oxygen concentration are,
respectively, the lowest and the highest oxygen levels that the organism will tolerate.

Peroxidase, superoxide dismutase, and catalase are the main enzymes involved in the detoxification of the
reactive oxygen species. Superoxide dismutase is usually present in a cell that can tolerate oxygen. All three
enzymes are usually detectable in cells that perform aerobic respiration and produce more ROS.

A capnophile is an organism that requires a higher than atmospheric concentration of CO, to grow.

9.3 The Effects of pH on Microbial Growth

Bacteria are generally neutrophiles. They grow best at neutral pH close to 7.0.
Acidophiles grow optimally at a pH near 3.0. Alkaliphiles are organisms that grow optimally between a pH
of 8 and 10.5. Extreme acidophiles and alkaliphiles grow slowly or not at all near neutral pH.

Microorganisms grow best at their optimum growth pH. Growth occurs slowly or not at all below the
minimum growth pH and above the maximum growth pH.

9.4 Temperature and Microbial Growth

Microorganisms thrive at a wide range of temperatures; they have colonized different natural environments
and have adapted to extreme temperatures. Both extreme cold and hot temperatures require evolutionary
adjustments to macromolecules and biological processes.

Psychrophiles grow best in the temperature range of 0-15 °C whereas psychrotrophs thrive between 4°C
and 25 °C.

Mesophiles grow best at moderate temperatures in the range of 20 °C to about 45 °C. Pathogens are usually
mesophiles.

Thermophiles and hyperthemophiles are adapted to life at temperatures above 50 °C.

Adaptations to cold and hot temperatures require changes in the composition of membrane lipids and proteins.

9.5 Other Environmental Conditions that Affect Growth

Halophiles require high salt concentration in the medium, whereas halotolerant organisms can grow and
multiply in the presence of high salt but do not require it for growth.

Halotolerant pathogens are an important source of foodborne illnesses because they contaminate foods
preserved in salt.

Photosynthetic bacteria depend on visible light for energy.

Most bacteria, with few exceptions, require high moisture to grow.

9.6 Media Used for Bacterial Growth

Chemically defined media contain only chemically known components.
Selective media favor the growth of some microorganisms while inhibiting others.
Enriched media contain added essential nutrients a specific organism needs to grow

Differential media help distinguish bacteria by the color of the colonies or the change in the medium.
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Review Questions

Multiple Choice

1. Which of the following methods would be used to
measure the concentration of bacterial contamination in
processed peanut butter?

a. turbidity measurement

b. total plate count

c. dry weight measurement

d. direct counting of bacteria on a calibrated slide

under the microscope

2. In which phase would you expect to observe the
most endospores in a Bacillus cell culture?
a. death phase
b. lag phase
c. log phase
d. log, lag, and death phases would all have roughly
the same number of endospores.

3. During which phase would penicillin, an antibiotic
that inhibits cell-wall synthesis, be most effective?

a. death phase

b. lag phase

c. log phase

d. stationary phase

4. Which of the following is the best definition of
generation time in a bacterium?
a. the length of time it takes to reach the log phase
b. the length of time it takes for a population of
cells to double
c. the time it takes to reach stationary phase
d. the length of time of the exponential phase

5. What is the function of the Z ring in binary fission?
a. It controls the replication of DNA.
b. It forms a contractile ring at the septum.

c. It separates the newly synthesized DNA
molecules.

d. It mediates the addition of new peptidoglycan
subunits.

6. If a culture starts with 50 cells, how many cells will
be present after five generations with no cell death?

a. 200
b. 400
c. 1600
d. 3200
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7. Filamentous cyanobacteria often divide by which of
the following?

a. budding

b. mitosis

c. fragmentation

d. formation of endospores

8. Which is a reason for antimicrobial resistance being
higher in a biofilm than in free-floating bacterial cells?
a. The EPS allows faster diffusion of chemicals in

the biofilm.

b. Cells are more metabolically active at the base of
a biofilm.

c. Cells are metabolically inactive at the base of a
biofilm.

d. The structure of a biofilm favors the survival of
antibiotic resistant cells.

9. Quorum sensing is used by bacterial cells to
determine which of the following?

a. the size of the population

b. the availability of nutrients

c. the speed of water flow

d. the density of the population

10. Which of the following statements about
autoinducers is incorrect?
a. They bind directly to DNA to activate

transcription.
They can activate the cell that secreted them.

¢. N-acylated homoserine lactones are autoinducers
in gram-negative cells.

d. Autoinducers may stimulate the production of
virulence factors.

11. An inoculated thioglycolate medium culture tube
shows dense growth at the surface and turbidity
throughout the rest of the tube. What is your conclusion?

a. The organisms die in the presence of oxygen

b. The organisms are facultative anaerobes.

c. The organisms should be grown in an anaerobic
chamber.

d. The organisms are obligate aerobes.
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12. An inoculated thioglycolate medium culture tube is
clear throughout the tube except for dense growth at the
bottom of the tube. What is your conclusion?

a. The organisms are obligate anaerobes.
The organisms are facultative anaerobes.
The organisms are aerotolerant.
The organisms are obligate aerobes.
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13. Pseudomonas aeruginosa is a common pathogen
that infects the airways of patients with cystic fibrosis. It
does not grow in the absence of oxygen. The bacterium
is probably which of the following?

a. an aerotolerant anaerobe

b. an obligate aerobe

c. an obligate anaerobe

d. afacultative anaerobe

14. Streptococcus mutans is a major cause of cavities.
It resides in the gum pockets, does not have catalase
activity, and can be grown outside of an anaerobic
chamber. The bacterium is probably which of the
following?

a. afacultative anaerobe

b. an obligate aerobe

c. an obligate anaerobe

d. an aerotolerant anaerobe

15. Why do the instructions for the growth of Neisseria
gonorrhoeae recommend a CO,-enriched atmosphere?
a. It uses CO, as a final electron acceptor in
respiration.
b. Itis an obligate anaerobe.
c. Itis a capnophile.
d. It fixes CO, through photosynthesis.

16. Bacteria that grow in mine drainage at pH 1-2 are
probably which of the following?

a. alkaliphiles

b. acidophiles

c. neutrophiles

d. obligate anaerobes

17. Bacteria isolated from Lake Natron, where the
water pH is close to 10, are which of the following?

a. alkaliphiles

b. facultative anaerobes

c. neutrophiles

d. obligate anaerobes
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18. In which environment are you most likely to
encounter an acidophile?

a. human blood at pH 7.2

b. ahot vent at pH 1.5

¢. human intestine at pH 8.5

d. milk at pH 6.5

19. A soup container was forgotten in the refrigerator
and shows contamination. The contaminants are
probably which of the following?

a. thermophiles

b. acidophiles

c. mesophiles

d. psychrotrophs

20. Bacteria isolated from a hot tub at 39 °C are
probably which of the following?

a. thermophiles

b. psychrotrophs

c. mesophiles

d. hyperthermophiles

21. In which environment are you most likely to
encounter a hyperthermophile?

a. hot tub

b. warm ocean water in Florida

¢. hydrothermal vent at the bottom of the ocean

d. human body

22. Which of the following environments would harbor
psychrophiles?
a. mountain lake with a water temperature of 12 °C
b. contaminated plates left in a 35 °C incubator
c. yogurt cultured at room temperature
d. salt pond in the desert with a daytime
temperature of 34 °C

23. Which of the following is the reason jams and
dried meats often do not require refrigeration to prevent
spoilage?

a. low pH

b. toxic alkaline chemicals

¢. naturally occurring antibiotics

d. low water activity

24. Bacteria living in salt marshes are most likely
which of the following?

a. acidophiles

b. barophiles

c. halotolerant

d. thermophiles
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25. EMB agar is a medium used in the identification
and isolation of pathogenic bacteria. It contains digested
meat proteins as a source of organic nutrients. Two
indicator dyes, eosin and methylene blue, inhibit the
growth of gram-positive bacteria and distinguish
between lactose fermenting and nonlactose fermenting
organisms. Lactose fermenters form metallic green or
deep purple colonies, whereas the nonlactose fermenters
form completely colorless colonies. EMB agar is an
example of which of the following?
a. a selective medium only
b. a differential medium only
c. a selective medium and a chemically defined
medium
d. aselective medium, a differential medium, and a
complex medium

26. Haemophilus influenzae must be grown on
chocolate agar, which is blood agar treated with heat to
release growth factors in the medium. H. influenzae is
described as

a. an acidophile

b. athermophile

c. an obligate anaerobe

d. fastidious

Matching

27. Match the definition with the name of the growth phase in the growth curve.

____Number of dying cells is higher than the number of cells dividing

Number of new cells equal to number of dying cells
New enzymes to use available nutrients are induced

Binary fission is occurring at maximum rate

A. Lag phase
B. Log phase
C. Stationary phase

D. Death phase
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28. Four tubes are illustrated with cultures grown in a medium that slows oxygen diffusion. Match the culture tube
with the correct type of bacteria from the following list: facultative anaerobe, obligate anaerobe, microaerophile,
aerotolerant anaerobe, obligate aerobe.

(Y
B o
(@ (b) (© (d)

29. Match the type of bacterium with its environment. Each choice may be used once, more than once, or not at all.
Put the appropriate letter beside the environment.

___psychotroph A. food spoiling in refrigerator
___mesophile B. hydrothermal vent
____thermophile C. deep ocean waters

____hyperthermophile  D. human pathogen

____psychrophile E. garden compost

Fill in the Blank
30. Direct count of total cells can be performed using a ora

31. The method allows direct count of total cells growing on solid medium.
32. A statistical estimate of the number of live cells in a liquid is usually done by

33. For this indirect method of estimating the growth of a culture, you measure using a
spectrophotometer.

34. Active growth of a culture may be estimated indirectly by measuring the following products of cell metabolism:
or

35. A bacterium that thrives in a soda lake where the average pH is 10.5 can be classified as a(n)

36. Lactobacillus acidophilus grows best at pH 4.5. It is considered a(n)

37. A bacterium that thrives in the Great Salt Lake but not in fresh water is probably a

38. Bacteria isolated from the bottom of the ocean need high atmospheric pressures to survive. They are

39. Staphylococcus aureus can be grown on multipurpose growth medium or on mannitol salt agar that contains
7.5% NaCl. The bacterium is

40. Blood agar contains many unspecified nutrients, supports the growth of a large number of bacteria, and allows
differentiation of bacteria according to hemolysis (breakdown of blood). The medium is and

41. Rogosa agar contains yeast extract. The pH is adjusted to 5.2 and discourages the growth of many
microorganisms; however, all the colonies look similar. The medium is and
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Short Answer

42. Why is it important to measure the transmission of light through a control tube with only broth in it when making
turbidity measures of bacterial cultures?

43. In terms of counting cells, what does a plating method accomplish that an electronic cell counting method does
not?

44. Order the following stages of the development of a biofilm from the earliest to the last step.
secretion of EPS

reversible attachment

dispersal

formation of water channels

irreversible attachment

IO eI

45. Infections among hospitalized patients are often related to the presence of a medical device in the patient. Which
conditions favor the formation of biofilms on in-dwelling catheters and prostheses?

46. Why are some obligate anaerobes able to grow in tissues (e.g., gum pockets) that are not completely free of
oxygen?

47. Why should Haemophilus influenzae be grown in a candle jar?

48. Interms of oxygen requirements, what type of organism would most likely be responsible for a foodborne illness
associated with canned foods?

49. Which macromolecule in the cell is most sensitive to changes in pH?

50. Which metabolic process in the bacterial cell is particularly challenging at high pH?

51. How are hyperthermophile’s proteins adapted to the high temperatures of their environment?
52. Why would NASA be funding microbiology research in Antarctica?

53. Fish sauce is a salty condiment produced using fermentation. What type of organism is likely responsible for the
fermentation of the fish sauce?

54. What is the major difference between an enrichment culture and a selective culture?

Critical Thinking

55. A patient in the hospital has an intravenous catheter inserted to allow for the delivery of medications, fluids,
and electrolytes. Four days after the catheter is inserted, the patient develops a fever and an infection in the skin
around the catheter. Blood cultures reveal that the patient has a blood-borne infection. Tests in the clinical laboratory
identify the blood-borne pathogen as Staphylococcus epidermidis, and antibiotic susceptibility tests are performed
to provide doctors with essential information for selecting the best drug for treatment of the infection. Antibacterial
chemotherapy is initiated and delivered through the intravenous catheter that was originally inserted into the patient.
Within 7 days, the skin infection is gone, blood cultures are negative for S. epidermidis, and the antibacterial
chemotherapy is discontinued. However, 2 days after discontinuing the antibacterial chemotherapy, the patient
develops another fever and skin infection and the blood cultures are positive for the same strain of S. epidermidis
that had been isolated the previous week. This time, doctors remove the intravenous catheter and administer oral
antibiotics, which successfully treat both the skin and blood-borne infection caused by S. epidermidis. Furthermore,
the infection does not return after discontinuing the oral antibacterial chemotherapy. What are some possible reasons
why intravenous chemotherapy failed to completely cure the patient despite laboratory tests showing the bacterial
strain was susceptible to the prescribed antibiotic? Why might the second round of antibiotic therapy have been more
successful? Justify your answers.

56. Why are autoinducers small molecules?
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57. Refer to Figure B1 in Appendix B. If the results from a pond water sample were recorded as 3, 2, 1, what
would be the MPN of bacteria in 100 mL of pond water?

58. Refer to Figure 9.15. Why does turbidity lose reliability at high cell concentrations when the culture reaches
the stationary phase?

59. A microbiology instructor prepares cultures for a gram-staining practical laboratory by inoculating growth
medium with a gram-positive coccus (nonmotile) and a gram-negative rod (motile). The goal is to demonstrate
staining of a mixed culture. The flask is incubated at 35 °C for 24 hours without aeration. A sample is stained and
reveals only gram-negative rods. Both cultures are known facultative anaerobes. Give a likely reason for success of
the gram-negative rod. Assume that the cultures have comparable intrinsic growth rates.

60. People who use proton pumps inhibitors or antacids are more prone to infections of the gastrointestinal tract.
Can you explain the observation in light of what you have learned?

61. The bacterium that causes Hansen’s disease (leprosy), Mycobacterium leprae, infects mostly the extremities of
the body: hands, feet, and nose. Can you make an educated guess as to its optimum temperature of growth?

62. Refer to Figure 9.29. Some hyperthermophiles can survive autoclaving temperatures. Are they a concern in
health care?

63. Haemophilus, influenzae grows best at 35—37 °C with ~5% CO, (or in a candle-jar) and requires hemin (X factor)
and nicotinamide-adenine-dinucleotide (NAD, also known as V factor) for growth.!”! Using the vocabulary learned in
this chapter, describe H. influenzae.

2. Centers for Disease Control and Prevention, World Health Organization. “CDC Laboratory Methods for the Diagnosis of Meningitis
Caused by Neisseria meningitidis, Streptococcus pneumoniae, and Haemophilus influenza. WHO Manual, 2nd edition.” 2011.

http://www.cdc.gov/meningitis/lab-manual/full-manual.pdf
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