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This paper is concerned with the 
century-old effort to determine the 
functional relations that hold between 
subjective continua and the physical 
continua that are presumed to underlie 
them. The first, and easily the most 
influential, attempt to specify the pos­
sible relations was made by Fechner. 
It rests upon empirical knowledge of 
how discrimination varies with inten­
sity along the physical continuum and 
upon the assumption that jnd's are 
subjectively equal throughout the con­
tinuum. When, for example, discrimi­
nation is proportional to intensity 
(Weber's law), Fechner claimed that 
the equal-jnd assumption leads to a 
logarithmic relation (Fechner's law). 

This idea has always been subject 
to controversy, but recent attacks upon 
it have been particularly severe. At 
the theoretical level, Luce and Edwards 
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( 1958) have pointed out that Fechner's 
mathematical reasoning was not sound. 
Among other things, his assumption is 
not sufficient to generate an interval 
scale. By recasting his problem some­
what-essentially by replacing the 
equal-jnd assumption with the some­
what stronger condition that "equally 
often noticed differences are equal, ex­
cept when always or never noticed"­
they were able to show that an interval 
scale results, and to present a mathe­
matical expression for it. Their work 
has no practical import when Weber's 
law, or its linear generalization Ax 
= ax+ b, is true, because the loga­
rithm is still the solution, but their jnd 
scale differs from Fechner's integral 
when Weber's law is replaced by some 
other function relating stimulus jnd's 
to intensity. 

At the empirical level, Stevens 
(1956, 1957) has argued that jnd's are 
unequal in subjective size on intensive, 
or what he calls prothetic, continua-a 
contention supported by considerable 
data-and that the relation between the 
subjective and physical continua is the 
power function ax13, not the logarithm. 
Using such "direct" methods as mag­
nitude estimation and ratio production, 
he and others (Stevens: 1956, 1957; 
Stevens & Galanter, 1957) have accu­
mulated considerable evidence to but-
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tress the empirical generality of the 
power function. Were it not for the 
fact that some psychophysicists are un­
easy about these methods, which seem 
to rest heavily upon our experience 
with the number system, the point 
would seem to be established. In an 
effort to bypass these objections, Ste­
vens (1959) has recently had subjects 
match values between pairs of con­
tinua, and he finds that the resulting 
relations are power functions whose 
exponents can be predicted from the 
magnitude scales of the separate vari­
ables. Thus, although much remains 
to be learned about the "direct" meth­
ods of scaling, the resulting power 
functions appear to summarize an in­
teresting body of data. 

Given these empirical results, one is 
challenged to develop a suitable formal 
theory from which' they can be shown 
to follow. There can be little doubt 
that, as a starting point, certain com­
monly made assumptions are inappro­
priate: equality of jnd's, equally often 
noticed differences, and Thurstone's 
equal variance assumption. Since, 
however, differences stand in the same 
-logarithmic-relation to ratios as 
Fechner's law does to the power func­
tion, a reasonable starting point might 
seem to be the assumption that the 
subjective ratio of stimuli one jnd apart 
is a constant independent of the stimu­
lus intensity. Obvious as the proce­
dure may seem, in my opinion it will 
not do. Although generations of psy­
chologists have managed to convince 
themselves that the equal-jnd assump­
tion is plausible, if not obvious, it is 
not and never has been particularly 
compelling; and in this respect, an 
equal-ratio assumption is not much dif­
ferent. This is not to deny that sub­
jective continua may have the equal­
ratio property-they must if the power 
law is correct and Weber's law holds­
but rather to argue that such an as-

sumption is too special to be acceptable 
as a basic axiom in a deductive theory. 

Elsewhere (Luce, in press), I have 
suggested another approach. An ax­
iom, or possible law, of wide applica­
bility in the study of choice behavior, 
may be taken in conjunction with the 
linear generalization of Weber's law to 
demonstrate the existence of a scale 
that is a power function of the physical 
continuum. Although that theory 
leads to what appears to be the correct 
form, it is open to two criticisms. 
First, the exponent predicted from dis­
crimination data is at least an order 
of magnitude larger than that obtained 
by direct scaling methods. Second, the 
theory is based upon assumptions 
about discriminability, and these are 
not obviously relevant to a scale deter­
mined by another method. Scales of 
apparent magnitude may be related to 
jnd scales, but it would be unwise to 
take it for granted that they are. 

The purpose of this paper is to out­
line still another approach to the prob­
lem, one that is not subject to the last 
criticism. The results have applicabil­
ity far beyond the bounds of psycho­
physics, for they concern the general 
question of the relation between meas­
urement and substantive theories. 

TYPES OF SCALES 

Although familiarity may by now 
have dulled our sense of its importance, 
Stevens' ( 1946, 1951) stress upon the 
transformation groups that leave cer­
tain specified scale properties invariant 
must, I think, be considered one of the 
more striking contributions to the dis­
cussion of measurement in the past few 
decades. Prior to his work, most writ­
ers had put extreme emphasis upon the 
property of "additivity,'' which is a 
characteristic of much physical meas­
urement (Cohen & Nagel, 1934). It 
was held that this property is funda­
mental to scientific measurement and, 
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indeed, the term "fundamental meas­
urement" was applied only to these 
scales. This contention, however, puts 
the nonphysical sciences in a most pe­
culiar fix. Since no one has yet dis­
covered an "additive" psychological 
variable, it would seem that psychology 
can have no fundamental measures of 
its own. This conclusion might be 
acceptable if we could define psycho­
logical measures in terms of the funda­
mental physical scales, i.e., as "derived" 
scales, but few of the things we want 
to measure seem to be definable in this 
way. So either rigorous psychological 
measurement must be considered im­
possible or additive empirical opera­
tions must not be considered essential 
to measurement. What is important 
is not additivity itself, but the fact that, 
when it is coupled with other plausible 
assumptions, it sharply restricts the 
class of transformations that may be 
applied to the resulting scale. Spe­
cifically, it makes the scale unique ex­
cept for multiplication by positive con­
stants, i.e., changes of unit. Additivity 
is not the only property that an assign­
ment of numbers to objects or events 
may have which sharply limits the 
admissible transformations. Some of 
these other properties appear applicable 
and relevant to psychological variables, 
and so in this sense psychological 
measurement appears to be possible. 

By a theory of measurement, I shall 
mean the following. One or more op­
erations and relations are specified over 
a set of objects or events ( the variable), 
and they are characterized by a num­
ber of empirically testable assumptions. 
In addition, it must be possible to as­
sign numbers to the objects and to 
identify numerical operations and rela­
tions with the empirical operations and 
relations in such a way that the nu­
merical operations represent ( are iso­
morphic to) the empirical ones. In 
other words, we have a measurement 

theory whenever (a) we have a system 
of rules for assigning numerical values 
to objects that are interrelated by as­
sumptions about certain empirical op­
erations involving them, and ( b) these 
rules let us set up an isomorphic rela­
tion between some properties of the 
number system and some aspects of 
the empirical operations. 

One of the simplest examples of a 
theory of measurement is a finite set 
( of goods) ordered by a binary (pref­
erence) relation P that is assumed to 
be antisymmetric and transitive. A 
scale u can be assigned to the set in 
such a manner that it represents P in 
the sense that xPy if and only if u(x) 
> u(y). 

By the scale type, I shall mean the 
group of transformations that result in 
other isomorphic representations of the 
measurement theory. In the preceding 
example any strictly monotonic increas­
ing transformation will do, and scales 
of this type are known as ordinal. 
Any transformation chosen from the 
scale type will be said to be an admissi­
ble transformation. 

It should be re-emphasized that quite 
divergent measurement theories may 
lead to the same scale type. For ex­
ample, Case V of Thurstone's law of 
comparative judgment (1927) and the 
von Neumann-Morgenstern utility ax­
ioms (1947) both result in interval 
scales ( of something), yet the basic 
terms and assumptions involved are 
totally different, even . though both 
theories can be applied to the same 
subject matter. Of course, the result­
ing interval scales may not be linearly 
related, for they may be measuring 
different things. 

A measurement theory may be con­
trasted with what I shall call a sub­
stantive theory. The former involves 
operations and assumptions only about 
a single class of objects which is treated 
as a unitary variable, whereas the lat-
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ter involves relations among two or 
more variables. In practice, substan­
tive theories are usually stated in terms 
of functional relations among the scales 
that result from the several measure­
ment theories for the variables involved. 

For a number of purposes, the scale 
type is much more crucial than the 
details of the measurement theory from 
which the scale is derived. For exam­
ple, much attention has been paid to 
the limitations that the scale type 
places upon the statistics one may sen­
sibly employ. If the interpretation of 
a particular statistic or statistical test 
is altered when admissible scale trans­
formations are applied, then our sub­
stantive conclusions will depend upon 
which arbitrary representation of the 
scale we have used in making our cal­
culations. Most scientists, when they 
understand the problem, feel that they 
should shun such statistics and rely 
only upon those that exhibit the ap­
propriate invariances for the scale type 
at hand. Both the geometric and arith­
metic means are legitimate in this sense 
for ratio scales ( unit arbitrary), only 
the latter is legitimate for interval 
scales ( unit and zero arbitrary), and 
neither for ordinal scales. For fuller 
discussions, see Stevens: 1946, 1951, 
1955; for a somewhat less strict inter­
pretation of the conclusions, see Mos­
teller, 1958. 

A second place where the transfor­
mation group imposes limitations is in 
the construction of substantive theories. 
These limitations seem to have received 
far less attention than the statistical 
questions, even though they are un­
doubtedly more fundamental. The re­
mainder of the paper will attempt to 
formulate the relation between scale 
types and functional laws, and to an­
swer the question what psychophysical 
laws are possible. As already pointed 
out these issues have scientific rele­
va~ce beyond psychophysics. 

A PRINCIPLE OF THEORY 

CONSTRUCTION 

In physics one finds _at least t~o 
classes of basic assumptions : specific 
empirical laws, such as the universal 
law of gravitation or Ohm's law, and 
a priori principles of theory construc­
tion such as the requirement that the 
law~ of mechanics should be invariant 
under uniform translations and rota­
tions of the coordinate system. Other 
laws, such as the conservation of en­
ergy, seem to have changed from the 
empirical to the a priori categ~ry dur­
ing the development of physics. In 
psychology more stress. ?as been put 
on the discovery of empmcal laws than 
on the formulation of guiding princi­
ples, and the search for empi;ical rela­
tions tends to be pursued without the 
benefit of explicit statements about 
what is and is not an acceptable the­
ory. 2 Since such principles ha_ve_ been 
used effectively in physics to hmit the 
possible physical laws, one wonders 
whether something similar may not be 
possible in psychol~gy: . 

Without such prmc1ples, practically 
any relation is a priori possible, and 
the correct one is difficult to pin down 
by empirical means because of the ever 
present errors of observation. The 
error problem is particularly acute in 
the behavioral sciences. On the other 
hand, if a priori consideration about 
what constitutes an acceptable theory 
limits us to some rather small set of 
possible laws, then fairly crude obser-

2 Two attempts to introduce and use such 
statements in behavioral problems are the 
combining of classes condition in stochastic 
learning theory (Bush, Mosteller, & Thomp­
son 1954) and some work on the form of 
the' utility function for money which is based 
upon the demand that certain game theory 
solutions, should remain unchanged when a 
constant sum of money is added to all the 
payoffs (Kemeny & Th?1;1pson, 1957) .. In 
neither case do the cond1t10ns seem particu­
larly compelling. 
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vations may sometimes suffice to decide 
which law actually obtains. 

The principle to be suggested appears 
to be a generalization of one used in 
physics. It may be stated as follows. 

A substantive theory relating two 
or more variables and the meas­
urement theories for these varia­
bles should be such that : 

1. (Consistency of substantive 
and measurement theories) Admis­
sible transformations of one or 
more of the independent variables 
shall lead, via the substantive the­
ory, only to admissible transfor­
mations of the dependent variables. 

2. (Invariance of the substan­
tive theory) Except for the nu­
merical values of parameters that 
reflect the effect on the dependent 
variables of admissible transfor­
mations of the independent vari­
ables, the mathematical structure 
of the substantive theory shall be 
independent of admissible trans­
formations of the independent 
variables. 

In this principle, and in what fol­
lows, the terms independent and de­
pendent variables are used only to 
distinguish the variables to which arbi­
trary, admissible transformations are 
imposed from those for which the 
transformations are determined by the 
substantive theory. As will be seen, 
in some cases the labeling is truly arbi­
trary in the sense that the substantive 
theory can be written so that any vari­
able appears either in the dependent 
or independent role, but in other cases 
there is a true asymmetry in the sense 
that some variables must be dependent 
and others independent if any substan­
tive theory relates them at all. 

One can hardly question the con­
sistency part of the principle. If an 
admissible transformation of an inde­
pendent variable leads to an inadmissi-

ble transformation of a dependent vari­
able, then one is simply saying that the 
strictures imposed by the measurement 
theories are incompatible with those 
imposed by the substantive theory. 
Such a logical inconsistency must, I 
think, be interpreted as meaning that 
something is amiss in the total theo­
retical structure. 

The invariance part is more subtle 
and controversial. It asserts that we 
should be able to state the substantive 
laws of the field without reference to 
the particular scales that are used to 
measure the variables. For example, 
we want to be able to say that Ohm's 
law states that voltage is proportional 
to the product of resistance and current 
without specifying the units that are 
used to measure voltage, resistance, or 
current. Put another way, we du not 
want to have one law when one set of 
units is used and another when a differ­
ent set of units is used. Although this 
seems plausible, there are examples 
from physics that can be viewed as a 
particular sort of violation of Part 2 ; 
however, let us postpone the discussion 
of these until some consequences of the 
principle as stated have been derived. 

The meaning of the principle may 
be clarified by examples that violate it. 
Suppose it is claimed that two ratio 
scales are related by a logarithmic law. 
An admissible transformation of the 
independent variable x is multiplication 
by a positive constant k, i.e., a change 
of unit. However, the fact that log 
kx = log k + log x means that an in­
admissible transformation, namely, a 
change of zero, is effected on the de­
pendent variable. Hence, the loga­
rithm fails to meet the consistency 
requirement. Next, consider an expo­
nential law, then the transformation 
leads to ek'" = ( e'") k. This can be 
viewed either as a violation of con­
sistency or of invariance. If the law 
is exponential, then the dependent vari-
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able is raised to a power, which is 
inconsistent with its being a ratio scale. 
Alternatively, the dependent variable 
may be taken to be a ratio scale, but 
then the law is not invariant because 
it is an exponential raised to a power 
that depends upon the unit of the inde­
pendent variable. 

AN APPLICATION OF THE PRINCIPLE 

Most of the physical measures en­
tering into psychophysics are idealized 
in physical theories in such a way that 
they form either ratio or interval 
scales. Mass, length, pressure, and 
time durations are measured on ratio 
scales, and physical time (not time 
durations), ordinary temperature, and 
entropy are measured on interval 
scales. Of course, differences and de­
rivatives of interval scale values con­
stitute ratio scales. 

Although most psychological scales 
in current use can at best be con­
sidered to be ordinal, those who have 
worked on psychological measurement 
theories have attempted to arrive at 
scales that are either ratio or interval, 
preferably the former. Examples: 
the equally often noticed difference 
assumption and the closely related 
Case V of Thurstone's "law of com­
parative judgment" lead to interval 
scales; Stevens has argued that mag­
nitude estimation methods result in 
ratio scales (but no measurement the­
ory has been offered in support of this 
plausible belief); and I have given suf­
ficient conditions to derive a ratio 
scale from discrimination data. Our 
question here, however, is not how 
well psychologists have succeeded in 
perfecting scales of one type or an­
other, but what a knowledge of scale 
types can tell us about the relations 
among scales. 

In addition to these two common 
types of scales, there is some interest 
in what have been called logarithmic 

interval scales (Stevens, 1957). In this 
case the admissible transformations 
are multiplications by positive con­
stants and raising to positive powers, 
i.e., kx•, where k > 0 and c > 0. The 
name applied to this scale type re­
flects the fact that log xis an interval 
scale, since the transformed scale goes 
into clog x + log k. We will consider 
all combinations of ratio, interval, and 
logarithmic interval scales. 

Because this topic is more general 
than psychophysics, I shall refer to 
the variables as independent and de­
pendent rather than physical and psy­
chological. Both variables will be 
assumed to form numerical continua 
having more than one point. Let 
x 2:: 0 denote a typical value of the 
independent variable and u(x) ~ 0 
the corresponding value of the de­
pendent variable, where u is the un­
known functional law relating them. 
Suppose, first, that both variables 
form ratio scales. If the unit of the 
independent variable is changed by 
multiplying all values by a positive 
constant k, then according to the 
principle stated above only an ad­
missible transformation of the de­
pendent variable, namely multiplica­
tion by a positive constant, should re­
sult and the form of the functional law 
should be unaffected. That is to say, 
the changed unit of the dependent 
variable may depend upon k, but it 
shall not depend upon x, so we denote 
it by K (k). Casting this into mathe­
matical terms, we obtain the func­
tional equation 

u(kx) = K(k)u(x) 

where k > 0 and K(k) > 0. 
Functional equations for the other 

cases are arrived at in a similar man­
ner. They are summarized in Table 1. 

The question is: What do these nine 
functional equations, each of which 
embodies the principle, imply about 
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TABLE 1 
THE FUNCTIONAL EQUATIONS FOR THE LAWS SATISFYING THE 

PRINCIPLE OF THEORY CONSTRUCTION 

Scale Types 

Functional Equation Comments 
Independent Dependent 

Variable Variable 

ratio ratio u(kx) =K(k)u(x) k>0, K(k)>0 
ratio interval u(kx) =K(k)u(x)+C(k) k>0, K(k) >0 
ratio log interval u(kx) =K(k)u(x)CCk> k>0, K(k)>0, C(k)>0 

interval ratio u(kx+c) =K(k,c)u(x) k>0, K(k,c) >0 
interval interval u(kx+c) =K(k,c)u(x) k >0, K(k,c) >0 

+C(k,c) 
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6 interval log interval u(kx+c) =K(k,c)u(x)C<k,•l k >0, K(k,c) >0, C(k,c) >0 
7 log interval ratio u(kx•) =K(k,c)u(x) k>0, c>0, K(k,c)>0 
8 log interval interval u(kx•) =K(k,c)u(x)+C(k,c) k>0, c>0, K(k,c)>0 
9 log interval log interval u(kx•) =K(k,c)u(x)C<k,•> k>0, c>0, K(k,c)>0, 

the form of u? We shall limit our 
consideration to theories where u is 
a continuous, nonconstant function 
of x. 

Theorem 1. If the independent and 
dependent continua are both ratio scales, 
then u (x) = ax/3, where (3 is independent 
of the units of both variables.8 

Proof. Set x = 1 in Equation 1, then 
u(k) = K(k)u(l). Because u is non­
constant we may choose k so that 
u(k) > 0, and because K(k) > 0, it 
followsthatu(1) > 0, so K(k) = u(k)/ 
u(1). Thus, Equation 1 becomesu(kx) 

8 In this and in the following theorems, 
the statement can be made more general if 
x is replaced by x + 'Y, where 'Y is a constant 
independent of x but having the same unit as 
x. The effect of this is to place the zero of 
u at some point different from the zero of x. 
In psychophysics the constant 'Y may be re­
garded as the threshold. The presence of 
such a constant means, of course, that a plot 
of log u vs. log x will not in general be a 
straight line. If, however, the independent 
variable is measured in terms of deviations 
from the threshold, the plot may become 
straight. Such nonlinear plots have been 
observed, and in at least some instances the 
degree of curvature seems to be correlated 
with the magnitude of the threshold. Fur­
ther empirical work is needed to see whether 
this is a correct explanation of the curvature. 

C(k,c) >0 

= u(k)u(x)/u(l). Letv= log[u/u(1)], 
then 

v(kx) = log [u(kx)/u(l)] 

= lo u(k)u(x) 
g u(1)u(1) 

= log [u(k)/u(1)] 

+ log [u(x)/u(l)] 

= v(k) + v(x) 

Since u is continuous, so is v, and it is 
well known that the only continuous 
solutions to the last functional equa­
tion are of the form 

v(x) = (3 log x 
= log x/3 

Thus, 
u(x) = ae•<:i:) 

= axil 

where a = u(l). 

We observe that since 

u(kx) = akl3xfl = a'xfl 

(3 is independent of the unit of x, and 
it is clearly independent of the unit 
of u. 

Theorem 2. If the independent con­
tinuum is a ratio scale and the depend-
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ent continuum an interval scale, then 
either u(x) = a log x + (3, where a is 
independent of the unit of the inde­
pendent variable, or u(x) = axfl + 8, 
where (3 is independent of the units of 
both variables and 8 is independent of 
the unit of the independent variable. 

Proof. In solving Equation 2, there 
are two possibilities to consider. 

1. If K(k) = 1, then define v = eu. 
Equation 2 becomes v(kx) = D(k)v(x), 
where D(k) = e0<k> > 0 and vis con­
tinuous, positive, and nonconstant be­
cause u is. By Theorem 1, v (x) = 8xa, 
where a is independent of the unit of 
x and where o > 0 because, by defini­
tion, v > 0. Taking logarithms, u(x) 
=a log x+.B, where (3= log 8. 

2. If K(k) ,/:- 1, then let u and u* 
be two different solutions to the prob­
lem, and define w = u* - u. It fol­
lows immediately from Equation 2 
that w must satisfy the functional 
equation w(kx) = K(k)w(x). Since 
both u and u* are continuous, so is w; 
however, it may be a constant. Since 
K(k) ,/:- 1, it is clear that the only 
constant solution is w = 0, and this is 
impossible since u and u* were chosen 
to be different. Thus, by Theorem 1, 
w(x) = axfl. Substituting this into the 
functional equation for w, it follows 
that K (k) = kfl. Then setting x = 0 
in Equation 2, we obtain C(k) = u(0) 
X (1 - kfl). We now observe that 
u(x) = axfl + 8, where 8 = u(0), is a 
solution to Equation 2: 

u(kx) = akflxfl+8 

= akllxll+u(0)kll+u(0)-u(0)kfl 

= kllu(x) +u(0)(l-kll) 

= K(k)u(x)+C(k) 

Any other solution is of the same form 
because 

u*(x) = u(x) + w(x) 

=axfl+0+axfl 

= (a+ a)xll + 8 

It is easy to see that 8 is independent 
of the unit of x and (3 is independent 
of both units. 

A much simpler proof of this theo­
rem can be given if we assume that u 
is differentiable in addition to being 
continuous. Since the derivative of an 
interval scale is a ratio scale, it follows 
immediately that du/dx satisfies 

Equation 1 and so, by Theorem 1, !: 
= axil. Integrating, we get 

u(x) = { (3 : 1xll+i + o if (3 ~ - 1 

a logx+o if /3 = - 1 

Theorem 3. If the independent con­
tinuum is a ratio scale and the depend­
ent continuum is a logarithmic interval 
scale, then either u(x) = 8eaxfl, where a 
is independent of the unit of the de­
pendent variable, (3 is independent of the 
units of both variables and 8 is inde­
pendent of the unit of the independent 
variable, or u(x) = axil, where (3 is in­
dependent of the units of both variables. 

Proof. Take the logarithm of Equa­
tion 3 and let v = log u: 

v(kx) = K*(k) + C(k)v(x) 

where K*(k) = log K(k). By Theo­
rem 2, either 

v(x) = axil+ 8* or v(x) = (3 log x + a* 

Taking exponentials, either 

u(x) = 8eax{l or u(x) = ax13 

where o = e6* and, in the second equa­
tion, a= ea*. 

Theorem 4. If the independent con­
tinuum is an interval scale, then it is 
impossible for the dependent continuum 
to be a ratio scale. 

Proof. Let c = 0 in Equation 4, then 
by Theorem 1 we know u(x) = axil. 



ON THE POSSIBLE PSYCHOPHYSICAL LAWS 89 

Now set k = 1 and c ~ 0 in Equa­
tion 3: 

a(x + c)fl = K(1,c)axfl 
so 

x + c = K(1,c) 11flx 

which implies x is a constant, con­
trary to our assumption that both 
continua have more than one point. 

Theorem 5. If the independent and 
dependent continua are both interval 
scales, then u(x) = ax+ (3, where {3 is 
independent of the unit of the inde­
pendent variable. 

Proof. If we let c = 0, then Equa­
tion 5 reduces to Equation 2 and so 
Theorem 2 applies. If u(x) = a log x 
+ (3, then choosing k = 1 and c ~ 0 
in Equation 5 yields 

a log (x + c) + (3 = K(1,c)a log x 
+ K (1,c)(3 + C(1,c) 

By taking the derivative with respect 
to x, it is easy to see that x must be 
a constant, which is impossible. 

Thus, we must conclude that u(x) 
= ax0 + (3. Again, set k = 1 and 

C ~ 0, 

a(x + c) 0 = K(1,c)ax0 

+ K(1,c)(3 + C(1,c) 

If o ~ 1, then differentiate with re­
spect to x: 

ao(x + c)•-1 = K(1,c)aox•-I 

which implies x is a constant, so we 
must conclude o = 1. It is easy to see 
that u(x) = ax + (3 satisfies Equation 
5. 

Theorem 6. If the independent con­
tinuum is an interval scale and the 
dependent continuum is a logarithmic 
interval scale, then u(x) = ae/3", where 
a is independent of the unit of the inde­
pendent variable and (3 is independent 
of the unit of the dependent variable. 

Proof. Take the logarithm of Equa­
tion 6 and let v = log u: 

v(kx + c) = K*(k,c) + C(k,c)v(x) 

where K*(k,c) = log K(k,c). 
Theorem 5, 

v(x) = f3x+a* 
so 

u(x) = ae13" 

where a = e"*. 

By 

Theorem 7. If the independent con­
tinuum is a logarithmic interval scale, 
then it is impossible for the dependent 
continuum to be a ratio scale. 

Proof. Let v(log x) = u(x), i.e., v(y) 
= u(ev), then Equation 7 becomes 

v(log k +clog x) = K(k,c)u(log x) 

Thus, log xis an interval scale and vis 
a ratio scale, which by Theorem 4 is 
impossible. 

Theorem 8. If the independent con­
tinuum is a logarithmic interval scale 
and the dependent continuum is an in­
terval scale, then u(x) = a log x + (3, 
where a is independent of the unit of the 
independent variable. 

Proof. Let v(log x) = u(x), then 
Equation 8 becomes 

v(log k + clog x) 
=K(k,c)v(log x) + C(k,c) 

so log x and v are both interval scales. 
By Theorem 5, 

u(x) = v(log x) 

= a log x + (3 

Theorem 9. If the independent and 
dependent continua are both logarithmic 
interval scales, then u (x) = axfJ, where 
(3 is independent of the units of both the 
independent and dependent variables. 
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Proof. Take the logarithm of Equa­
tion 9 and let v = log u : 

v(kx•) = K*(k,c) + C(k,c)v(x) 

where K*(k,c) = log K(k,c). By 
Theorem 8, 

v (x) = (3 log x + a* 
so 

u(x) = ev(x) 

= axfi 

where a = e"'*. 

ILLUSTRATIONS 

It may be useful, prior to discussing 
these results, to cite a few familiar 
laws that accord with some of them. 
The best source of examples is classi­
cal physics, where most of the funda­
mental variables are idealized as con­
tinua that form either ratio or interval 
scales. No attempt will be made to 
illustrate the results concerning loga­
rithmic interval scales, because no 
actual use of scales of this type seems 
to have been made. 

The variables entering into Cou­
lomb's law, Ohm's law, and Newton's 
gravitation law are all ratio scales, and 
in each case the form of the law is a 
power function, as called for by Theo­
rem 1. Additional examples of Theo­
rem 1 can be found in geometry since 
length, area, and volume are ratio 
scales; thus the dependency of the 
volume of a sphere upon its radius or 
of the area of a square on its side are 
illustrations. 

Other important variables such as 
energy and entropy form interval 
scales, and we can therefore anticipate 
that as dependent variables they will 
illustrate Theorem 2. If a body of 
constant mass is moving at velocity v, 
then its energy is of the form av2 + B. 
If the temperature of a perfect gas is 
constant, then as a function of pres­
sure p the entropy of the gas is of the 

form a logp + f). No examples, of 
course, are possible for Theorem 4. 

As an example of Theorem S we 
may consider ordinary temperature, 
which is frequently measured in terms 
of the length of a column of mercury. 
Although length as a measure forms a 
ratio scale, the length of a column of 
mercury used to measure temperature 
is an interval scale (subject to the 
added constraint that the length is 
positive), since we may choose any 
initial length to correspond to a given 
temperature, such as the freezing 
point of water. If the temperature 
scale is also an interval scale, as is 
usually assumed, then the only rela­
tion possible according to Theorem 5 
is the linear one. 

DISCUSSION 

Some with whom I have discussed 
these theorems-which from a mathe­
matical point of view are not new­
have had strong misgivings about 
their interpretation; the feeling is that 
something of a substantive nature 
must have been smuggled into the 
formulation of the problem. They 
argue that practically any functional 
relation can hold between two vari­
ables and that it is an empirical, not 
a theoretical, matter to ascertain what 
the function may be in specific cases. 
To support this view and to challenge 
the theorems, they have cited ex­
amples from physics, such as the ex­
ponential law of radioactive decay or 
some sinusoidal function of time, which 
seem to violate the theorems stated 
above. We must, therefore, examine 
the ways in which these examples by­
pass the rather strong conclusions of 
the present theory. 

All physical examples which have 
been suggested to me as counter­
examples to the theorems have a 
common form: the independent vari­
able is a ratio scale, but it enters into 
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the equation in a dimensionlees fash­
ion. For example, some identifiable 
value of the variable is taken as the 
reference level Xo, and all other values 
are expressed in reference to it as x/xo. 
The effect of this is to make the quan­
tity x/x0 independent of the unit used 
to measure the variable, since kx/kxo 
= x/xo. In periodic functions of 
time, the period is often used as a 
reference level. Slightly more gen­
erally, the independent variable only 
appears multiplied by a constant e 
whose units are the inverse of those 
of x. Thus, whenever the unit of x 
is changed by multiplying all values 
by a constant k > 0, it is necessary to 
adjust the unit of e by multiplying it 
by 1/k. But this means that the 
product is independent of k: (e/k)(kx) 
= ex. The time constant in the law 
of radioactive decay is of this nature. 

There are two ways to view these 
examples in relation to the principle 
stated above. If the ratio scale x is 
taken to be the independent variable, 
then the invariance part of the prin­
ciple is not satisfied by these laws. If, 
however, for the purpose of the law 
under consideration the dimensionless 
quantity ex is treated as the variable, 
then no violation has occurred. Al­
though surprising at first glance, it is 
easy to see that the principle imposes 
no limitations upon the form of the 
law when the independent variable is 
dimensionless, i.e., when no trans­
formations save the identity are ad­
missible. 

We are thus led to the following con­
clusion. Either the independent vari­
able is a ratio scale that is multiplied 
by a dimensional constant that makes 
the product independent of the unit of 
the scale, in which case there is no re­
striction upon the laws into which it 
may enter, or the independent vari­
able is not rendered dimensionless, in 
which case the laws must be of the 

form described by the above theorems. 
Both situations are found in classical 
physics, and one wonders if there is 
any fundamental difference between 
them. I have not seen any discussion 
of the matter, and I have only the 
most uncertain impression that there 
is a difference. In many physical situa­
tions where a dimensional constant 
multiplies the independent variable, 
the dependent variable is bounded. 
This is true of both the decay and 
periodic laws. Usually, the constant 
is expressed in some natural way in 
terms of the bounds, as, for example, 
the period of a periodic function. 
Whether dimensional constants can 
legitimately be used in other situa­
tions, or whether they can always be 
eliminated, is not at all apparent to 
me. 

One may legitimately question which 
of these alternatives is applicable to 
psychophysics, and the answer is far 
from clear. The widespread use of, 
say, the threshold as a reference level 
seems at first to suggest that psycho­
physical laws are to be expressed in 
terms of dimensionless quantities; 
however, the fact that this is done 
mainly to present results in decibels 
may mean no more than that the 
given ratio scale is being transformed 
into an interval scale in accordance 
with Theorem 2: 

y = a log x/xo 

= a log x + (3 
where 

(3 = - a log Xo 

In addition to dimensionless vari­
ables as a means of by-passing the re­
strictions imposed by scale types, 
three other possibilities deserve dis­
cussion. 

First, the idealization that the scales 
form mathematical continua and that 
they are related by a continuous func-
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tion may not reflect the actual state 
of affairs in the empirical world. It 
is certainly true that, in detail, physi­
cal continua are not mathematical 
continua, and there is ample reason 
to suspect that the same holds for 
psychological variables. But the as­
sumptions that stimuli and responses 
both form continua are idealizations 
that are difficult to give up; to do 
so would mean casting out much 
of psychophysical theory. Alterna­
tively, we could drop the demand that 
the function relating them be con­
tinuous, but it is doubtful if this 
would be of much help by itself. The 
discontinuous solutions to, say, Equa­
tion 1 are manifold and extremely wild 
in their behavior. They are so wild 
that it is difficult to say anything pre­
cise about them at all (see Hamel, 
1905; Jones: 1942a, 1942b), and it~ 
doubtful that such solutions represent 
empirical laws. 

Second, casual observation suggests 
that it might be appropriate to assume 
that at least the dependent variable is 
bounded, e.g., that there is a psycho­
logically maximum loudness. Al­
though plausible, boundedness cannot 
be imposed by itself since, as is shown 
in the theorems, all the continuous 
solutions to the appropriate functional 
equations are unbounded if the func­
tions are increasing, as they must be 
for empirical reasons. It seems clear 
that boundedness of the dependent 
variable is intimately tied up either 
with introducing a reference level so 
that the independent variable is an 
absolute scale or with some discon­
tinuity in the formulation of the prob­
lem, possibly in the nature of the 
variables or possibly in the function 
relating them. Actually, one can es­
tablish that it must be in the nature 
of the variables. Suppose, on the 
contrary, that the variables are ratio 
scales that form numerical continua 

and that they are related by a func­
tion u that is nonnegative, noncon­
stant, and monotonic increasing, but 
not necessarily continuous. We now 
need only show that u cannot be 
bounded to show that the discon­
tinuity must exist in the variable. 
Suppose, therefore, that it is bounded 
and that the bound is M. By Equa­
tion 1, u(kx) = K(k)u(x) ~ M, so 
u(x) ~ M/K(k). Fork? 1, the mon­
otonicity of u implies that u(x) 
~ u(kx) = K (k)u(x), so choosing u(x) 
>0 we see that K(k) ~ 1. If for 
some k ~ 1, K(k) > 1, then K can be 
made arbitrarily large since, for any 
integer n, K(kn) = K(k)n, but since 

u(x) ~ K~)' this implies u = 0, con­

trary to assumption. Thus, for all 
k ~ 1, K(k) = 1, which by Equation 
1, means u(kx) = u(x), for all x and 
k ~ 1. This in turn implies u is a 
constant, which again is contrary to 
assumption. Thus, we have estab­
lished our claim that some discon­
tinuity must reside in the nature of 
the variables. 

Third, in many situations, there are 
two or more independent variables; 
for example, both intensity and fre­
quency determine loudness. Usually 
we hold all but one variable constant 
in our empirical investigations, but 
the fact remains that the others are 
there and that their presence may 
make some difference in the total 
range of possible laws. For example, 
suppose there are two independent 
variables, x and y, both of which 
form ratio scales and that the depend­
ent variable u is also a ratio scale, 
then the analogue of Equation 1 is 

u(kx,hy) = K(k,h)u(x,y) 

where k > 0, h > 0, and K(k,h) > 0. 
We know by Theorem 1 that if we 
hold one variable, say y, fixed at some 
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value and let h = 1, then the solution 
must be of the form 

u(x,y) = a(y)xfl<v> 

But holding x constant and letting 
k = 1, we also know that it must be 
of the form 

u(x,y) = o(x)yda:) 

Thus, 
a(y)xfl(y) = o(x)y•<a:) 

If we restrict ourselves to u's having 
partial derivatives of both variables, 
this equation can be shown (see Sec­
tion 2.C.2 of Luce [in press]) to have 
solutions only of the form: 

U (X,y) = axbyc+d log a: 

Thus, the principle again severely re­
stricts the possible laws, even when we 
admit more than one independent 
variable.4 

It must be emphasized that the 
remark in Footnote 3 does not apply 
here. If a function that depends upon 
one independent variable is added to 
the other, e.g., 

u(x,y) = a(y)[x + ')'(y)Jll<v) 

then wholly new solution possibilities 
exist (see Section 2.C.3 of Luce [in 
press]). 

In sum, there appear to be two ways 
around the restrictions set forth in the 
theorems. The first can be viewed 
either as a rejection of Part 2 of the 
principle or as the creation of a dimen­
sionless independent variable from a 
ratio scale; it involves the presence of 
dimensional constants that cancel out 

; The use of this argument to arrive at 
the form of u(x,y) seems much more satis­
factory and convincing than the heuristic 
development given in Section 2.C of Luce (in 
press), and the empirical suggestions given 
there should gain correspondingly in interest 
as a result of the present work. 

the dimensions of the independent 
variables. This appears to be par­
ticularly appropriate if the dependent 
variable has a true, well-defined bound. 
The second is to reject the idealiza­
tion of the variables as numerical con­
tinua and, possibly, to assume that 
they are bounded. 

On the other hand, if the theorems 
are applicable, then the possible psy­
chophysical (and other) laws become 
severely limited. Indeed, they are so 
limited that one can argue that the 
important question is not to deter­
mine the forms of the laws, but rather 
to create empirically testable measure­
ment theories for the several psycho­
physical methods in order that we may 
know for certain what types of scales 
are being obtained. Once this is 
known, the form of the psychophysical 
functions is determined except for 
some numerical constants. In the 
meantime, however, experimental de­
terminations of the form of the psy­
chophysical functions by methods for 
which no measurement theories exist 
provides at least indirect evidence of 
the type of scale being obtained. For 
example, the magnitude methods seem 
to result in power functions, which 
suggests that the psychological meas­
ure is either a ratio or logarithmic in­
terval scale, not an interval scale. 
Since the results from cross-modality 
matchings tend to eliminate the loga­
rithmic interval scale as a possibility, 
there is presumptive evidence that 
these methods yield ratio scales, as 
Stevens has claimed. 

SUMMARY 

The following problem was con­
sidered. What are the possible forms 
of a substantive theory that relates a 
dependent variable in a continuous 
manner to an independent variable? 
Each variable is idealized as a nu-
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TABLE 2 

THE POSSIBLE LAWS SATISFYING THE PRINCIPLE OF THEORY CONSTRUCTION 

Scale Types 
Possible Laws Comments• 

Independent Variable Dependent Variable 

ratio ratio u(x) =axfi (:J/x; (:J/u 
ratio interval u(x) =a log x+fJ a/x 

u(x) =axfi+o (:J/x; (:J/u; a/x 
ratio log interval u(x) =oeax{J a/u; (:J/x; (:J/u; o/x 

u(x) =axfi (:J/x; (:J/u 
interval ratio impossible 
interval interval u(x) =ax+fJ (:J/x 
interval log interval u(x) =aefi'" a/x; (:J/u 

log interval ratio impossible 
log interval interval u(x) =a log x+,8 a/x 
log interval log interval u(x) =axfi ,8/x; ,8/u 

• The notation a/x means "a ls independent of the unit of x." 

merical continuum and is restricted by 
its measurement theory to being either 
a ratio, an interval, or a logarithmic 
interval scale. As a principle of the­
ory construction, it is suggested that 
transformations of the independent 
variable that are admissible under its 
measurement theory shall not result 
in inadmissible transformations of the 
dependent variable (consistency) and 
that the form of the functional rela­
tion between the two variables shall 
not be altered by admissible trans­
formation of the independent variable 
(invariance). This principle limits sig­
nificantly the possible laws relating 
the two continua, as shown in Table 2. 

These results do not hold in two im­
portant circumstances. First, if the 
independent variable is a ratio scale 
that is rendered dimensionless by 
multiplying it by a constant having 
units reciprocal to those of the inde­
pendent variable, then either the prin­
ciple has no content or it is violated, 
depending upon how one wishes to 
look at the matter. Second, if the 
variables are discrete rather than con­
tinuous, or if the functional relation is 
discontinuous, then laws other than 
those given in Table 2 are possible. 
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