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This paper is concerned with the
century-old effort to determine the
functional relations that hold between
subjective continua and the physical
continua that are presumed to underlie
them, The first, and easily the most
influential, attempt to specify the pos-
sible relations was made by Fechner.
It rests upon empirical knowledge of
how discrimination varies with inten-
sity along the physical continuum and
upon the assumption that jnd’s are
subjectively equal throughout the con-
tinuum. When, for example, discrimi-
nation is proportional to intensity
(Weber’s law), Fechner claimed that
the equal-jnd assumption leads to a

logarithmic relation (Fechner’s law)..

This idea has always been subject
to controversy, but recent attacks upon
it have been particularly severe. At
the theoretical level, Luce and Edwards
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(1958) have pointed out that Fechner’s
mathematical reasoning was not sound.
Among other things, his assumption is
not sufficient to generate an interval
scale. By recasting his problem some-
what—essentially by replacing the
equal-jnd assumption with the some-
what stronger condition that “equally
often noticed differences are equal, ex-
cept when always or never noticed”—
they were able to show that an interval
scale results, and to present a mathe-
matical expression for it. Their work
has no practical import when Weber’s
law, or its linear generalization Ax
=ax + b, is true, because the loga-
rithm is still the solution, but their jnd
scale differs from Fechner’s integral
when Weber’s law is replaced by some
other function relating stimulus jnd’s
to intensity.

At the empirical level, Stevens
(1956, 1957) has argued that jnd’s are
unequal in subjective size on intensive,
or what he calls prothetic, continua—a
contention supported by considerable
data—and that the relation between the
subjective and physical continua is the
power function a8, not the logarithm.
Using such “direct” methods as mag-
nitude estimation and ratio production,
he and others (Stevens: 1956, 1957 ;
Stevens & Galanter, 1957) have accu-
mulated considerable evidence to but-
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tress the empirical generality of the
power function. Were it not for the
fact that some psychophysicists are un-
easy about these methods, which seem
to rest heavily upon our experience
with the number system, the point
would seem to be established. In an
effort to hypass these objections, Ste-
vens (1959) has recently had subjects
match values between pairs of con-
tinua, and he finds that the resulting
relations are power functions whose
exponents can be predicted from the
magnitude scales of the separate vari-
ables. Thus, although much remains
to be learned about the “direct” meth-
ods of scaling, the resulting power
functions appear to summarize an in-
teresting body of data.

Given these empirical results, one is
challenged to develop a suitable formal
theory from which they can be shown
to follow. There can be little doubt
that, as a starting point, certain com-
monly made assumptions are inappro-
priate: equality of jud’s, equally often
noticed differences, and Thurstone’s
equal variance assumption. Since,
however, differences stand in the same
—logarithmic—relation to ratios as
Fechner’s law does to the power func-
tion, a reasonable starting point might
seem to be the assumption that the
subjective ratio of stimuli one jnd apart
is a constant independent of the stimu-
lus intensity, Obvious as the proce-
dure may seem, in my opinion it will
not do. Although generations of psy-
chologists have managed to convince
themselves that the equal-jnd assump-
tion is plausible, if not obvious, it is
not and never has been particularly
compelling; and in this respect, an
equal-ratio assumption is not much dif-
ferent. This is not to deny that sub-
jective continua may have the equal-
ratio property-——they must if the power
law is correct and Weber’s law holds—
but rather to argue that such an as-

sumption is too special to be acceptable
as a basic axiom in a deductive theory.
Elsewhere (Luce, in press), I have
suggested another approach. An ax-
iom, or possible law, of wide applica-
bility in the study of choice behavior,
may be taken in conjunction with the
linear generalization of Weber’s law to
demonstrate the existence of a scale
that is a power function of the physical
continuum.  Although that theory
leads to what appears to be the correct
form, it is open to two criticisms.
First, the exponent predicted from dis-
crimination data is at least an order
of magnitude larger than that obtained
by direct scaling methods. Second, the
theory is based upon assumptions
about discriminability, and these are
not obviously relevant to a scale deter-
mined by another method. Scales of
apparent magnitude may be related to
jnd scales, but it would be unwise to
take it for granted that they are.
The purpose of this paper is to out-
line still another approach to the prob-
lem, one that is not subject to the last
criticism. The results have applicabil-
ity far beyond the bounds of psycho-
physics, for they concern the general
question of the relation between meas-
urement and substantive theories.

TYPES OF SCALES

Although familiarity may by now
have dulled our sense of its importance,
Stevens’ (1946, 1951) stress upon the
transformation groups that leave cer-
tain specified scale properties invariant
must, I think, be considered one of the
more striking contributions to the dis-
cussion of measurement in the past few
decades. Prior to his work, most writ-
ers had put extreme emphasis upon the
property of “additivity,” which is a
characteristic of much physical meas-
urement (Cohen & Nagel, 1934). It
was held that this property is funda-
mental to scientific measurement and,
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indeed, the term “fundamental meas-
~ urement” was applied only to these
scales. This contention, however, puts
the nonphysical sciences in a most pe-
culiar fix. Since no one has yet dis-
covered an “additive” psychological
variable, it would seem that psychology
can have no fundamental measures of
its own. This conclusion might be
acceptable if we could define psycho-
logical measures in terms of the funda-
mental physical scales, i.e., as “derived”
scales, but few of the things we want
to measure seem to be definable in this
way. So either rigorous psychological
measurement must be considered im-
possible or additive empirical opera-
tions must not be considered essential
to measurement. What is important
is not additivity itself, but the fact that,
when it is coupled with other plausible
assumptions, it sharply restricts the
class of transformations that may be
applied to the resulting scale. Spe-
cifically, it makes the scale unique ex-
cept for multiplication by positive con-
stants, i.e., changes of unit. Additivity
is not the only property that an assign-
ment of numbers to objects or events
may have which sharply limits the
admissible transformations. Some of
these other properties appear applicable
and relevant to psychological variables,
and so in this sense psychological
measurement appears to be possible.
By a theory of measurement, 1 shall
mean the following. One or more op-
erations and relations are specified over
a set of objects or events (the variable),
and they are characterized by a num-
ber of empirically testable assumptions.
In addition, it must be possible to as-
sigh numbers to the objects and to
identify numerical operations and rela-
tions with the empirical operations and
relations in such a way that the nu-
merical operations represent (are iso-
morphic to) the empirical ones. In
other words, we have a measurement

theory whenever (@) we have a system
of rules for assigning numerical values
to objects that are interrelated by as-
sumptions about certain empirical op-
erations involving them, and (b) these
rules let us set up an isomorphic rela-
tion between some properties of the
number system and some aspects of
the empirical operations.

One of the simplest examples of a
theory of measurement is a finite set
(of goods) ordered by a binary (pref-
erence) relation P that is assumed to
be antisymmetric and transitive, A
scale # can be assigned to the set in
such a manner that it represents P in
the sense that #Py if and only if u(x)
> u(y).

By the scale type, I shall mean the
group of transformations that result in
other isomorphic representations of the
measurement theory. In the preceding
example any strictly monotonic increas-
ing transformation will do, and scales
of this type are known as ordinal
Any transformation chosen from the
scale type will be said to be an admissi-
ble transformation.

It should be re-emphasized that quite
divergent measurement theories may
lead to the same scale type. For ex-
ample, Case V of Thurstone’s law of
comparative judgment (1927) and the
von Neumann-Morgenstern utility ax-
ioms (1947) both result in interval
scales (of something), yet the basic
terms and assumptions involved are
totally different, even though both
theories can be applied to the same
subject matter. Of course, the result-
ing interval scales may not be linearly
related, for they may be measuring
different things.

A measurement theory may be con-
trasted with what I shall call a sub-
stantive theory. The former involves
operations and assumptions only about
a single class of objects which is treated
as a unitary variable, whereas the lat-
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ter involves relations among two or
more variables. In practice, substan-
tive theories are usually stated in terms
of functional relations among the scales
that result from the several measure-
ment theories for the variables involved.

For a number of purposes, the scale
type is much more crucial than the
details of the measurement theory from
which the scale is derived. For exam-
ple, much attention has been paid to
the limitations that the scale type
places upon the statistics one may sen-
sibly employ. If the interpretation of
a particular statistic or statistical test
is altered when admissible scale trans-
formations are applied, then our sub-
stantive conclusions will depend upon
which arbitrary representation of the
scale we have used in making our cal-
culations., Most scientists, when they
understand the problem, feel that they
should shun such statistics and rely
only upon those that exhibit the ap-
propriate invariances for the scale type
at hand. Both the geometric and arith-
metic means are legitimate in this sense
for ratio scales (unit arbitrary), only
the latter is legitimate for interval
scales (unit and zero arbitrary), and
neither for ordinal scales. For fuller
discussions, see Stevens: 1946, 1951,
1955 ; for a somewhat less strict inter-
pretation of the conclusions, see Mos-
teller, 1958,

A second place where the transfor-
mation group imposes limitations is in
the construction of substantive theories.
These limitations seem to have received
far less attention than the statistical
questions, even though they are un-
doubtedly more fundamental. The re-
mainder of the paper will attempt to
formulate the relation between scale
types and functional laws, and to an-
swer the question what psychophysical
laws are possible. As already pointed
out, these issues have scientific rele-
vance beyond psychophysics.

A PrincirLE oF THEORY
CONSTRUCTION

In physics one finds at least two
classes of basic assumptions: specific
empirical laws, such as the universal
law of gravitation or Ohm’s law, and
a priori principles of theory construc-
tion, such as the requirement that the
laws of mechanics should be invariant
under uniform translations and rota-
tions of the coordinate system. Other
laws, such as the conservation of en-
ergy, seem to have changed from the
empirical to the a priori category dur-
ing the development of physics. In
psychology more stress has been put
on the discovery of empirical laws than
on the formulation of guiding princi-
ples, and the search for empirical rela-
tions tends to be pursued without the
benefit of explicit statements about
what is and is not an acceptable the-
ory.? Since such principles have been
used effectively in physics to limit the
possible physical laws, one wonders
whether something similar may not be
possible in psychology.

Without such principles, practically
any relation is a priori possible, and
the correct one is difficult to pin down
by empirical means because of the ever
present errors of observation. The
error problem is particularly acute in
the behavioral sciences. On the other
hand, if a priori consideration about
what constitutes an acceptable theory
limits us to some rather small set of
possible laws, then fairly crude obser-

2 Two attempts to introduce and use such
statements in behavioral problems are the
combining of classes condition in stochastic
learning theory (Bush, Mosteller, & Thomp-
son, 1954) and some work on the form of
the utility function for money which is based
upon the demand that certain game theory
solutions should remain unchanged when a
constant sum of money is added to all the
payoffs (Kemeny & Thompson, 1957). In
neither case do the conditions seem particu-
larly compelling.
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vations may sometimes suffice to decide
which law actually obtains.

The principle to be suggested appears
to be a generalization of one used in
physics. It may be stated as follows.

A substantive theory relating two
or more variables and the meas-
urement theories for these varia-
bles should be such that:

1. (Consistency of substantive
and measurement theories) Admis-
sible transformations of one or
more of the independent variables
shall lead, via the substantive the-
ory, only to admissible transfor-
mations of the dependent variables.

2. (Invariance of the subston-
tive theory) Except for the nu-
merical values of parameters that
reflect the effect on the dependent
variables of admissible transfor-
mations of the independent vari-
ables, the mathematical structure
of the substantive theory shall be
independent of admissible trans-
formations of the independent
variables,

In this principle, and in what fol-
lows, the terms independent and de-
pendent variables are used only to
distinguish the variables to which arbi-
trary, admissible transformations are
imposed from those for which the
transformations are determined by the
substantive theory. As will be seen,
in some cases the labeling is truly arbi-
trary in the sense that the substantive
theory can be written so that any vari-
able appears either in the dependent
or independent role, but in other cases
there is a true asymmetry in the sense
that some variables must be dependent
and others independent if any substan-
tive theory relates them at all.

One can hardly question the con-
sistency part of the principle. If an
admissible transformation of an inde-
pendent variable leads to an inadmissi-

ble transformation of a dependent vari-
able, then one is simply saying that the
strictures imposed by the measurement
theories are incompatible with those
imposed by the substantive theory.
Such a logical inconsistency must, I
think, be interpreted as meaning that
something is amiss in the total theo-
retical structure.

The invariance part is more subtle
and controversial. It asserts that we
should be able to state the substantive
laws of the field without reference to
the particular scales that are used to
measure the variables. For example,
we want to be able to say that Ohm’s
law states that voltage is proportional
to the product of resistance and current
without specifying the units that are
used to measure voltage, resistance, or
current. Put another way, we do not
want to have one law when one set of
units is used and another when a differ-
ent set of units is used. Although this
seems plausible, there are examples
from physics that can be viewed as a
particular sort of violation of Part 2;
however, let us postpone the discussion
of these until some consequences of the
principle as stated have been derived.

The meaning. of the principle may
be clarified by examples that violate it,
Suppose it is claimed that two ratio
scales are related by a logarithmic law.
An admissible transformation of the
independent variable x is multiplication
by a positive constant k, i.e,, a change
of unit. However, the fact that log
kx =log k + log ¥ means that an in-
admissible transformation, namely, a
change of zero, is effected on the de-
pendent variable. Hence, the loga-
rithm fails to meet the consistency
requirement. Next, consider an expo-
nential law, then the transformation
leads to e =(e®)*. This can be
viewed either as a violation of con-
sistency or of invariance. If the law
is exponential, then the dependent vari-
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able is raised to a power, which is
inconsistent with its being a ratio scale.
Alternatively, the dependent variable
may be taken to be a ratio scale, but
then the law is not invariant because
it is an exponential raised to a power
that depends upon the unit of the inde-
pendent variable.

AN APPLICATION OF THE PRINCIPLE

Most of the physical measures en-
tering into psychophysics are idealized
in physical theories in such a way that
they form either ratio or interval
scales. Mass, length, pressure, and
time durations are measured on ratio
scales, and physical time (not time
durations), ordinary temperature, and
entropy are measured on interval
scales. Of course, differences and de-
rivatives of interval scale values con-
stitute ratio scales.

Although most psychological scales
in current use can at best be con-
sidered to be ordinal, those who have
worked on psychological measurement
theories have attempted to arrive at
scales that are either ratio or interval,
preferably the former. Examples:
the equally often noticed difference
assumption and the closely related
Case V of Thurstone'’s ‘“law of com-
parative judgment” lead to interval
scales; Stevens has argued that mag-
nitude estimation methods result in
ratio scales (but no measurement the-
ory has been offered in support of this
plausible belief) ; and I have given suf-
ficient conditions to derive a ratio
scale from discrimination data. Our
question here, however, is not how
well psychologists have succeeded in
perfecting scales of one type or an-
other, but what a knowledge of scale
types can tell us about the relations
among scales.

In addition to these two common
types of scales, there is some interest
in what have been called logarithmic

interval scales (Stevens, 1957). In this
case the admissible transformations
are multiplications by positive con-
stants and raising to positive powers,
l.e., kx¢, where £ > 0 and ¢ > 0. The
name applied to this scale type re-
flects the fact that log x is an interval
scale, since the transformed scale goes
into clog x + log k. We will consider
all combinations of ratio, interval, and
logarithmic interval scales.

Because this topic is more general
than psychophysics, I shall refer to
the variables as independent and de-
pendent rather than physical and psy-
chological. Both variables will be
assumed to form numerical continua
having more than one point. Let
x> 0 denote a typical value of the
independent wvariable and u(x)> 0
the corresponding value of the de-
pendent variable, where 4 is the un-
known functional law relating them.
Suppose, first, that both wvariables
form ratio scales. If the unit of the
independent variable is changed by
multiplying all values by a positive
constant k, then according to the
principle stated above only an ad-
missible transformation of the de-
pendent variable, namely multiplica-
tion by a positive constant, should re-
sult and the form of the functional law
should be unaffected. That is to say,
the changed unit of the dependent
variable may depend upon k, but it
shall not depend upon x, so we denote
it by K(k). Casting this into mathe-
matical terms, we obtain the func-
tional equation

u(kx) = K(k)u{x)

where £ > 0 and K (k) > 0.
Functional equations for the other
cases are arrived at in a similar man-
ner. Theyaresummarizedin Table 1.
The question is: What do these nine
functional equations, each of which
embodies the principle, imply about
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TrE FuncrioNAL EQUATIONS FOR THE LAws SATISFYING THE
PrinciPLE OF THEORY CONSTRUCTION

Scale Types
II::I?) Functional Equation Comments
Independent Dependent
Variable Variable
1 ratio ratio u(kx) =K (k)u(x) k>0, K(k)>0
2 ratio interval u(kx) =K (B)u(x) +C(k) k>0, K{k) >0
3 ratio log interval | u(kx) =K (k)u(x)C® k>0, K(k) >0, C(k) >0
4 interval ratio u(kx+c¢) =K (k,c)u(x) k>0, K({k,c)>0
5 interval interval u(kx+-c) =K (k,c)u(x) £>0, K(kc)>0
+C(k,c)
6 interval log interval | u(kx+c) =K (k,)u(x)C® | k>0, K(k,c)>0, Clk,c) >0
7 | log interval ratio u(kx®) =K (k,c)u(x) k>0,¢c>0, K(ke)>0
8 | log interval interval u(kxe) =K (k,c)u(x)+C(k,c) | 2>0, ¢>0, K(k,c)>0
9 | log interval | log interval | u(kx°) =K(k,c)u(x)Cthe k>0, c>0, K(k,c)>0,
C(k,c) >0

the form of »? We shall limit our
consideration to theories where % is
a continuous, nonconstant function
of x.

Theorem 1. If the independent and
dependent continua are both ratio scales,
then u(x) = axf, where B is independent
of the units of both variables?

Proof. Setx = 1in Equation 1, then
u(k) = K(k)u(l). Because u is non-
constant we may choose 2 so that
w(k) > 0, and because K(k) > 0, it
follows that# (1) > 0,s0 K (k) = u(k)/
#(1). Thus, Equation 1 becomes u (kx)

3In this and in the following theorems,
the statement can be made more general if
x is replaced by & + v, where v is a constant
independent of # but having the same unit as
#. The effect of this is to place the zero of
u at some point different from the zero of .
In psychophysics the constant 4 may be re-
garded as the threshold. The presence of
such a constant means, of course, that a plot
of log # vs. log & will not in general be a
straight line. If, however, the independent
variable is measured in terms of deviations
from the threshold, the plot may become
straight. Such nonlinear plots have been
observed, and in at least some instances the
degree of curvature seems to be correlated
with the magnitude of the threshold. Fur-
ther empirical work is needed to see whether
this is a correct explanation of the curvature.

=u(k)u(x)/u(1). Letv=log[u/u(1)],
then
v(kx) = log [u(kx)/u(1)]
u(k)u(x)
%% u(D)u(l)
log [u(k)/u(1)]
+ log [u(x)/u(1)]
= o (k) + v(x)
Since u is continuous, so is v, and it is
well known that the only continuous

solutions to the last functional equa-
tion are of the form

v(x) = Blogx
= log xf

=1

Thus,
u(x) = ae?@®
= qxb
where & = u(1).
We observe that since
u(kx) = akfxf = o'xf

8 is independent of the unit of x, and
it is clearly independent of the unit
of u.

Theorem 2. If the independent con-
tinuum is a ratio scale and the depend-
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ent continuum an interval scale, then
either u(x) = alogx + B, where a is
independent of the unit of the inde-
pendent variable, or u(x) = ax® -+ §,
where B is independent of the units of
both variables and & is independent of
the unit of the independent variable.

Proof. In solving Equation 2, there
are two possibilities to consider.

1. If K(k) = 1, then define v = e,
Equation 2 becomes v(kx) = D(k)v(x),
where D (k) = ¢°® > 0 and v is con-
tinuous, positive, and nonconstant be-
cause#is. By Theorem 1,2(x) = dx?,
where « is independent of the unit of
x and where § > 0 because, by defini-
tion, v > 0. Taking logarithms, u(x)
= ¢ log x4 8, where 8= log 4.

2. If K(k) £ 1, then let # and u*
be two different solutions to the prob-
lem, and define w = «* — u. It fol-
lows immediately from Equation 2
that w must satisfy the functional
equation w(kx) = K(k)w(x). Since
both % and «* are continuous, so is w;
however, it may be a constant. Since
K(k) # 1, it is clear that the only
constant solution is w = 0, and this is
impossible since # and #»* were chosen
to be different. Thus, by Theorem 1,
w(x) = axf. Substituting this into the
functional equation for w, it follows
that K(k)=#5. Then setting x = 0
in Equation 2, we obtain C(k) = u(0)
X ({1 — k%). We now observe that
u(x) = axf 4 5, where § = u(0), is a
solution to Equation 2:

u(kx) = akfxP+0

okPxB 41 (0) kP-4 (0) — 2 (0) P
PP (x)+u(0) (1 —2F)

= K(k)u(x)+C(k)

Any other solution is of the same form
because

w*(x)

I

i

u(x) + w(x)
axf + 6 4+ axf
(o + a)xP + &

i

It is easy to see that § is independent
of the unit of x and 8 is independent
of both units.

A much simpler proof of this theo-
rem can be given if we assume that «
is differentiable in addition to being
continuous. Since the derivative of an
interval scale is a ratio scale, it follows
immediately that du/dx satisfies
du

Equation 1 and so, by Theorem 1, .

= ax?. Integrating, we get

— S s i B — 1
w(x) =48+ 1

a logx+8 if g=—1

Theorem 3. If the independent con-
tinuum is @ ratio scale and the depend-
ent continuum is a logarithmic interval
scale, then either u(x) = 6e***, where o
is independent of the unit of the de-
pendent variable, B is independent of the
units of both variables and & is inde-
pendent of the unit of the independent
variable, or u(x) = oxB, where 8 is in-
dependent of the units of both variables.

Proof. Take the logarithm of Equa-
tion 3 and let v = log u:

v(kx) = K*(k) + C(k)v(x)

where K*(k) = log K(k). By Theo-
rem 2, either

o(x) = ax® 4 §* orv(x) = Blogx + o*
Taking exponentials, either
u(x) = de**® or wu(x) = ax?

where § = ¢’* and, in the second equa-
tion, o = e**,

Theorem 4. If the independent con-
tinuum is an interval scale, then 1t is
impossible for the dependent continuum
to be a ratio scale.

Proof. Letc¢ = 0in Equation 4, then
by Theorem 1 we know #(x) = oxf.
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Now set £ = 1 and ¢ # 0 in Equa-
tion 3:

alx + ¢)f = K(1,0)ax?
S0
x4 ¢ = K(1,0)

which implies x is a constant, con-
trary to our assumption that both
continua have more than one point.

Theorem 5. If the independent and
dependent continua are both interval
scales, then u(x) = ax + B, where 8 1s
independent of the unit of the inde-
pendent variable.

Proof. If we let ¢ = 0, then Equa-
tion 5 reduces to Equation 2 and so
Theorem 2 applies. If#(x) = alogx
+ 8, then choosing £ = 1 and ¢ # 0
in Equation 5 yields

alog (x +¢) + 8= K({,0)alogx
+ K(1,0)8 + C(1,¢)

By taking the derivative with respect
to x, it is easy to see that x must be
a constant, which is impossible.

Thus, we must conclude that #(x)
= ax? + 8. Again, set k=1 and
¢ # 0,

alx + ¢)® = K(1,0)ax?
+ K(1,0)8 + C(1,0)

If 6§ # 1, then differentiate with re-
spect to x:

ad(x + €)1 = K (1,¢)atx!

which implies x is a constant, so we
must conclude 6=1. It is easy to see
that #(x) = ax + B satisfies Equation
5.

Theorem 6. If the independent con-
tinuum is an interval scale and the
dependent continuum 1is a logarithmic
snterval scale, then u(x) = aef?, where
o 15 independent of the unit of the inde-
pendent variable and B is independent
of the unit of the dependent variable.

Proof. Take the logarithm of Equa-
tion 6 and let v = log u:

v(kx + ¢) = K*(k,0) + C(k,0)v(x)

where K*(k,c) = log K(kc). By
Theorem 3,

v(x) = Bx+a*
80
u(x) = aeh*

where ¢ = e**,

Theorem 7. If the independent con-
tinuum 1s a logarithmic interval scale,
then it 1is impossible for the dependent
continuum to be a ratio scale.

Proof. Letv(logx) = u(x), i.e., v(y)
= yu(ev), then Equation 7 becomes

v(log £ + ¢ log x) = K (k,c)u(log x)

Thus, log x is an interval scale and v is
a ratio scale, which by Theorem 4 is
impossible.

Theorem 8, If the independent con-
tinuum s a logarithmic interval scale
and the dependent continuum is an in-
terval scale, then u(x) = alogx + B,
where a is independent of the unit of the
independent variable.

Proof. Let w(log x) = u(x), then
Equation 8 becomes

v(log B + clog x)
=K (k,c)v(log x) + C(k,c)

so log x and v are both interval scales.
By Theorem 5,

u(x) = v(log x)
alogx + 8

Theorem 9. If the independent and
dependent coniinua are both logarithmic
interval scales, then u(x) = ax®, where
B s independent of the units of both the
independent and dependent variables.
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Proof. Take the logarithm of Equa-
tion 9 and let v = log u:

v(kx®) = K*(k,c) + C(k,c)v(x)

where K*(k,c) = log K{(kc).
Theorem 8,

v(x) = Blogx + a*

By

S0

u(x) = e*@
= axf
where a = e**.
ILLUSTRATIONS

It may be useful, prior to discussing
these results, to cite a few familiar
laws that accord with some of them.
The best source of examples is classi-
cal physics, where most of the funda-
mental variables are idealized as con-
tinua that form either ratio or interval
scales. No attempt will be made to
illustrate the results concerning loga-
rithmic interval scales, because no
actual use of scales of this type seems
to have been made.

The variables entering into Cou-
lomb’s law, Ohm’s law, and Newton’s
gravitation law are all ratio scales, and
in each case the form of the law is a
power function, as called for by Theo-
rem 1. Additional examples of Theo-
rem 1 can be found in geometry since
length, area, and volume are ratio
scales; thus the dependency of the
volume of a sphere upon its radius or
of the area of a square on its side are
illustrations.

Other important variables such as
energy and entropy form interval
scales, and we can therefore anticipate
that as dependent variables they will
illustrate Theorem 2. If a body of
constant mass is moving at velocity o,
then its energy is of the form az? 4+ 4.
If the temperature of a perfect gas is
constant, then as a function of pres-
sure p the entropy of the gas is of the

form «logp + 8. No examples, of
course, are possible for Theorem 4.

As an example of Theorem 5 we
may consider ordinary temperature,
which is frequently measured in terms
of the length of a column of mercury.
Although length as a measure forms a
ratio scale, the length of a column of
mercury used to measure temperature
is an interval scale (subject to the
added constraint that the length is
positive), since we may choose any
initial length to correspond to a given
temperature, such as the freezing
point of water. If the temperature
scale is also an interval scale, as is
usually assumed, then the only rela-
tion possible according to Theorem §
is the linear one.

DiscussioN

Some with whom I have discussed
these theorems—which from a mathe-
matical point of view are not new—
have had strong misgivings about
their interpretation ; the feeling is that
something of a substantive nature
must have been smuggled into the
formulation of the problem. They
argue that practically any functional
relation can hold between two wvari-
ables and that it is an empirical, not
a theoretical, matter to ascertain what
the function may be in specific cases.
To support this view and to challenge
the theorems, they have cited ex-
amples from physics, such as the ex-
ponential law of radioactive decay or
some sinusoidal function of time, which
seem to violate the theorems stated
above. We must, therefore, examine
the ways in which these examples by-
pass the rather strong conclusions of
the present theory.

All physical examples which have
been suggested to me as counter-
examples to the theorems have a
common form: the independent vari-
able is a ratio scale, but it enters into
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the equation in a dimensionless fash-
ion. For example, some identifiable
value of the variable is taken as the
reference level xo, and all other values
are expressed in reference to it as x/x,.
The effect of this is to make the quan-
tity x/x0 independent of the unit used
to measure the variable, since kx/kxo
= x/xo. In periodic functions of
time, the period is often used as a
reference level. Slightly more gen-
erally, the independent variable only
appears multiplied by a constant ¢
whose units are the inverse of those
of x. Thus, whenever the unit of x
is changed by multiplying all values
by a constant 2 > 0, it is necessary to
adjust the unit of ¢ by multiplying it
by 1/k. But this means that the
product is independent of k: (¢/k) (kx)
= ¢x. The time constant in the law
of radioactive decay is of this nature.

There are two ways to view these
examples in relation to the principle
stated above. If the ratio scale x is
taken to be the independent variable,
then the invariance part of the prin-
ciple is not satisfied by these laws. If,
however, for the purpose of the law
under consideration the dimensionless
quantity cx is treated as the variable,
then no violation has occurred. Al-
though surprising at first glance, it is
easy to see that the principle imposes
no limitations upon the form of the
law when the independent variable is
dimensionless, i.e., when no trans-
formations save the identity are ad-
missible.

We are thus led to the following con-
clusion. Either the independent vari-
able is a ratio scale that is multiplied
by a dimensional constant that makes
the product independent of the unit of
the scale, in which case there is no re-
striction upon the laws into which it
may enter, or the independent vari-
able is not rendered dimensionless, in
which case the laws must be of the

form described by the above theorems.
Both situations are found in classical
physics, and one wonders if there is
any fundamental difference between
them. I have not seen any discussion
of the matter, and I have only the
most uncertain impression that there
is a difference. In many physical situa-
tions where a dimensional constant
multiplies the independent variable,
the dependent variable is bounded.
This is true of both the decay and
periodic laws. Usually, the constant
is expressed in some natural way in
terms of the bounds, as, for example,
the period of a periodic function.
Whether dimensional constants can
legitimately be used in other situa-
tions, or whether they can always be
eliminated, is not at all apparent to
me.

Onemay legitimately question which
of these alternatives is applicable to
psychophysics, and the answer is far
from clear. The widespread use of,
say, the threshold as a reference level
seems at first to suggest that psycho-
physical laws are to be expressed in
terms of dimensionless quantities;
however, the fact that this is done
mainly to present results in decibels
may mean no more than that the
given ratio scale is being transformed
into an interval scale in accordance
with Theorem 2:

y = alog x/xe
=alogx + 8
where
B = — alogx.

In addition to dimensionless vari-
ables as a means of by-passing the re-
strictions imposed by scale types,
three other possibilities deserve dis-
cussion.

First, the idealization that the scales
form mathematical continua and that
they are related by a continuous func-
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tion may not reflect the actual state
of affairs in the empirical world. It
is certainly true that, in detail, physi-
cal continua are not mathematical
continua, and there is ample reason
to suspect that the same holds for
psychological variables. But the as-
sumptions that stimuli and responses
both form continua are idealizations
that are difficult to give up; to do
so would mean casting out much
of psychophysical theory. Alterna-
tively, we could drop the demand that
the function relating them be con-
tinuous, but it is doubtful if this
would be of much help by itself. The
discontinuous solutions to, say, Equa-
tion 1 are manifold and extremely wild
in their behavior. They are so wild
that it is difficult to say anything pre-
cise about them at all (see Hamel,
1905; Jones: 1942a, 1942b), and it is
doubtful that such solutions represent
empirical laws.

Second, casual observation suggests
that it might be appropriate to assume
that at least the dependent variable is
bounded, e.g., that there is a psycho-
logically maximum loudness. Al-
though plausible, boundedness cannot
be imposed by itself since, as is shown
in the theorems, all the continuous
solutions to the appropriate functional
equations are unbounded if the func-
tions are increasing, as they must be
for empirical reasons. It seems clear
that boundedness of the dependent
variable is intimately tied up either
with introducing a reference level so
that the independent variable is an
absolute scale or with some discon-
tinuity in the formulation of the prob-
lem, possibly in the nature of the
variables or possibly in the function
relating them. Actually, one can es-
tablish that it must be in the nature
of the variables. Suppose, on the
contrary, that the variables are ratio
scales that form numerical continua

and that they are related by a func-
tion » that is nonnegative, noncon-
stant, and monotonic increasing, but
not necessarily continuous. We now
need only show that # cannot be
bounded to show that the discon-
tinuity must exist in the variable.
Suppose, therefore, that it is bounded
and that the bound is 4. By Equa-
tion 1, u(kx) = K(P)u(x)< M, so
u(x) < M/K(k). Fork>1,themon-
otonicity of # implies that u(x)
Su(kx) = K{k)u(x), so choosing «(x)
>0 we see that K(k)> 1. If for
some k> 1, K(k) > 1, then K can be
made arbitrarily large since, for any
integer #n, K (k") = K(k)", but since

M T _
u(x) < X®) this implies # = 0, con-

trary to assumption. Thus, for all
k> 1, K(k) = 1, which by Equation
1, means u(kx) = u(x), for all x and
k> 1. This in turn implies % is a
constant, which again is contrary to
assumption. Thus, we have estab-
lished our claim that some discon-
tinuity must reside in the nature of
the variables.

Third, in many situations, there are
two or more independent variables;
for example, both intensity and fre-
quency determine loudness. Usually
we hold all but one variable constant
in our empirical investigations, but
the fact remains that the others are
there and that their presence may
make some difference in the total
range of possible laws. For example,
suppose there are two independent
variables, x and v, both of which
form ratio scales and that the depend-
ent variable # is also a ratio scale,
then the analogue of Equation 1 is

w(kx,hy) = K (k1)u(x,y)

where £ > 0, & > 0, and K(%,k) > 0.
We know by Theorem 1 that if we
hold one variable, say v, fixed at some
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value and let 2 = 1, then the solution
must be of the form

u(x,y) = a(y)xf®

But holding x constant and letting
k = 1, we also know that it must be
of the form

u(x,y) = 8(x)y*@
Thus,
a(y)xﬂ(ll) = 5(x)y€($)

If we restrict ourselves to #’s having
partial derivatives of both variables,
this equation can be shown (see Sec-
tion 2.C.2 of Luce [in press]) to have
solutions only of the form:

u(x’y) — beyc+d log =

Thus, the principle again severely re-
stricts the possible laws, even when we
admit more than one independent
variable.*

It must be emphasized that the
remark in Footnote 3 does not apply
here. Ifafunction thatdependsupon
one independent variable is added to
the other, e.g.,

= a([x + v @

then wholly new solution possibilities
exist (see Section 2.C.3 of Luce [in
press ).

In sum, there appear to be two ways
around the restrictions set forth in the
theorems. The first can be viewed
either as a rejection of Part 2 of the
principle or as the creation of a dimen-
sionless independent variable from a
ratio scale; it involves the presence of
dimensional constants that cancel out

u(x,y)

+ The use of this argument to atrive at
the form of u(x,y) seems much more satis-
factory and convincing than the heuristic
development given in Section 2.C of Luce (in
press), and the empirical suggestions given
there should gain correspondingly in interest
as a result of the present work.

the dimensions of the independent
variables. This appears to be par-
ticularly appropriate if the dependent
variable has a true, well-defined bound.
The second is to reject the idealiza-
tion of the variables as numerical con-
tinua and, possibly, to assume that
they are bounded.

On the other hand, if the theorems
are applicable, then the possible psy-
chophysical (and other) laws become
severely limited. Indeed, they are so
limited that one can argue that the
important question is not to deter-
mine the forms of the laws, but rather
to create empirically testable measure-
ment theories for the several psycho-
physical methods in order that we may
know for certain what types of scales
are being obtained. Once this is
known, the form of the psychophysical
functions is determined except for
some numerical constants. In the
meantime, however, experimental de-
terminations of the form of the psy-
chophysical functions by methods for
which no measurement theories exist
provides at least indirect evidence of
the type of scale being obtained. For
example, the magnitude methods seem
to result in power functions, which
suggests that the psychological meas-
ure is either a ratio or logarithmic in-
terval scale, not an interval scale.
Since the results from cross-modality
matchings tend to eliminate the loga-
rithmic interval scale as a possibility,
there is presumptive evidence that
these methods yield ratio scales, as
Stevens has claimed.

SUMMARY

The following problem was con-
sidered. What are the possible forms
of a substantive theory that relates a
dependent variable in a continuous
manner to an independent variable?
Each variable is idealized as a nu-
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TABLE 2
THE PosSIBLE LAws SATISFYING THE PRINCIPLE OF THEORY CONSTRUCTION

Scale Types
Posgsible Laws Commentss
Independent Variable | Dependent Variable
ratio ratio #(x) =P B/x; B/u
ratio interval u(x) =alog x+8 a/x
] i u (%) =oxf 48 B/x; B/u; 8/x
ratio log interval (%) = e afu; B/x; B/u; b/%
(%) =oxP B/%; B/u
interval ratio impossible
interval interval u(x) =ax-p B/x
interval log interval u(x) =ceP?® a/x; B/u
log interval ratio impossible
log interval interval u(x) =alog x+8 a/x
log interval log interval u(x) =a B8/x; B/u
s The notation a/x means “a is independent of the unit of x.”
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